
Studies in Computational Intelligence 866

Witold Pedrycz
Shyi-Ming Chen Editors

Deep Learning:
Concepts and
Architectures

Studies in Computational Intelligence

Volume 866

Series Editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

The books of this series are submitted to indexing to Web of Science,
EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Witold Pedrycz • Shyi-Ming Chen
Editors

Deep Learning: Concepts
and Architectures

123

Editors
Witold Pedrycz
Department of Electrical
and Computer Engineering
University of Alberta
Edmonton, AB, Canada

Shyi-Ming Chen
Department of Computer Science
and Information Engineering
National Taiwan University of Science
and Technology
Taipei, Taiwan

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-030-31755-3 ISBN 978-3-030-31756-0 (eBook)
https://doi.org/10.1007/978-3-030-31756-0

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-31756-0

Preface

Deep learning delivers an interesting and conceptually as well as algorithmically
state-of-the-art approach to Artificial Intelligence and Intelligent Systems, in
general. This paradigm has been applied to numerous areas including machine
translation, computer vision, and natural language processing. Deep learning,
regarded as a subset of machine learning, utilizes a hierarchy level of artificial
neural networks to carry out efficiently the process of machine learning.

This volume provides the reader with a comprehensive and up-to-date treatise in
the area of deep learning. There are two focal and closely associated aspects here,
namely concepts supported by the environment of deep learning and a plethora of
its architectures. Those two faculties are strongly intertwined as well as linked with
the application domain under discussion. The concepts of deep learning revolve
around the structural and automatic (to a significant degree) mechanisms knowledge
representation. A variety of multilayer architectures bring about the tangible and
functionally meaningful pieces of knowledge. Their structural development
becomes essential to successful practical solutions. The architectural developments
that arise here support their detailed learning and refinements.

The chapters, authored by active researchers in the field, bring a collection of
studies that reflect upon the current trends in design and analysis of deep learning
topologies and ensuing applied areas of successful realizations including language
modeling, graph representation, and forecasting.

We would like to take this opportunity and express our thanks to the Series
Editor-in-Chief, Professor Janusz Kacprzyk, who has played an instrumental role in
the realization of the volume by providing constant encouragement and support. We
are indebted to the enthusiastic team at Springer; those are the professionals who, as
usual, delivered advice and guidance as well as made the entire production efficient
and completed in a timely manner.

Edmonton, Canada Witold Pedrycz
Taipei, Taiwan Shyi-Ming Chen

v

Contents

Deep Learning Architectures . 1
Mohammad-Parsa Hosseini, Senbao Lu, Kavin Kamaraj,
Alexander Slowikowski and Haygreev C. Venkatesh
1 Background . 2
2 Training Procedure . 2

2.1 Supervised Learning . 2
2.2 Unsupervised Learning . 3
2.3 Semi-supervised Learning . 3

3 Deep Learning Categories . 4
3.1 Convolutional Neural Networks (CNNs) 4
3.2 Pretrained Unsupervised Networks . 10
3.3 Recurrent and Recursive Neural Networks 13

4 Conclusions . 22
References . 23

Theoretical Characterization of Deep Neural Networks 25
Piyush Kaul and Brejesh Lall
1 Overview . 25
2 Neural Net Architecture . 26
3 Brief Mathematical Background . 31

3.1 Topology and Manifolds . 31
3.2 Riemannian Geometry and Curvature . 33
3.3 Signal Processing on Graphs . 37

4 Characterization by Homological Complexity . 40
4.1 Betti Numbers . 40
4.2 Architecture Selection from Homology of Dataset 42
4.3 Computational Homology . 42
4.4 Empirical Measurements . 43

vii

5 Characterization by Scattering Transform . 45
5.1 Overview . 45
5.2 Invariants and Symmetries . 46
5.3 Translation and Diffeomorphisms . 47
5.4 Contraction and Scale Separation by Wavelets 48
5.5 Filter Bank, Phase Removal and Contractions 48
5.6 Translation Groups . 49
5.7 Inverse Scattering and Sparsity . 51

6 Characterization by Curvature . 51
6.1 Mean Field Theory and Gaussian Curvature 51
6.2 Riemannian and Ricci Curvature Measurement 56

References . 61

Scaling Analysis of Specialized Tensor Processing Architectures
for Deep Learning Models . 65
Yuri Gordienko, Yuriy Kochura, Vlad Taran, Nikita Gordienko,
Alexandr Rokovyi, Oleg Alienin and Sergii Stirenko
1 Introduction . 66
2 Background and Related Work . 67

2.1 Tensor Cores . 68
2.2 Tensor Processing Units . 69
2.3 Other DNNs Accelerators . 69
2.4 Parallel Algorithms and Tensor Processing Architectures 70
2.5 Parallel Algorithms and Computing Complexity in DNNs 71

3 Experimental and Computational Details . 73
3.1 Datasets, Equipment, Metrics, and Models 73
3.2 Computing Complexity of DNNs . 77
3.3 Scaling Analysis . 78

4 Results . 79
4.1 Vgg16 . 79
4.2 ResNet50 . 85
4.3 CapsNet . 85

5 Discussion . 91
6 Conclusions . 95
References . 96

Assessment of Autoencoder Architectures for Data Representation 101
Karishma Pawar and Vahida Z. Attar
1 Introduction . 102
2 General Architecture and Taxonomy of Autoencoders 103
3 Variants of Autoencoders . 104

3.1 Application Specific Autoencoders . 106
3.2 Regularized Autoencoders . 110
3.3 Robust Autoencoders Tolerant to Noise . 113
3.4 Generative Autoencoders . 114

viii Contents

4 Factors Affecting Overall Performance of Autoencoders 117
4.1 Training . 117
4.2 Objective Function . 118
4.3 Activation Functions . 120
4.4 Layer Size and Depth . 120

5 Applications of Autoencoders . 120
6 Conclusion . 126
Appendix . 126
References . 128

The Encoder-Decoder Framework and Its Applications 133
Ahmad Asadi and Reza Safabakhsh
1 Introduction . 133

1.1 Machine Translation . 134
1.2 Image/Video Captioning . 135
1.3 Textual/Visual Question Answering . 135
1.4 Text Summarization . 136

2 Baseline Encoder-Decoder Model . 136
2.1 Background . 136
2.2 The Encoder-Decoder Model for Machine Translation 137
2.3 Formulation . 137
2.4 Encoders in Machine Translation (Feature Extraction) 139
2.5 Decoders in Machine Translation (Language Modeling) 140

3 Encoder Structure Varieties . 141
3.1 Sentence as Input . 142
3.2 Image as Input . 143
3.3 Video as Input . 144

4 Decoder Structure Varieties . 151
4.1 Long-Term Dependencies . 151
4.2 LSTMs . 152
4.3 Stacked RNNs . 152
4.4 Vanishing Gradients in Stacked Decoders 154
4.5 Reinforcement Learning . 156

5 Attention Mechanism . 160
5.1 Basic Mechanism . 160
5.2 Extensions . 161

6 Future Work. 163
7 Conclusion . 163
References . 164

Deep Learning for Learning Graph Representations 169
Wenwu Zhu, Xin Wang and Peng Cui
1 Introduction . 169

Contents ix

2 High Order Proximity Preserving Network Embedding 171
2.1 Problem Definition . 172
2.2 The SDNE Model . 173
2.3 Analysis and Discussions on SDNE. 178

3 Global Structure Preserving Network Embedding 179
3.1 Preliminaries and Definitions . 180
3.2 The DRNE Model . 181

4 Structure Preserving Hyper Network Embedding 185
4.1 Notations and Definitions . 187
4.2 The DHNE Model . 188

5 Uncertainty-Aware Network Embedding . 192
5.1 Notations . 193
5.2 The DVNE Model . 194

6 Dynamic-Aware Network Embedding . 197
6.1 The DepthLGP Model . 199
6.2 Extensions and Variants . 205

7 Conclusion and Future Work . 206
References . 207

Deep Neural Networks for Corrupted Labels . 211
Ishan Jindal, Matthew Nokleby, Daniel Pressel, Xuewen Chen
and Harpreet Singh
1 Introduction . 212
2 Label Noise . 214
3 Relationship to Prior Work . 215
4 Proposed Approach . 217

4.1 Proposed Approach . 218
4.2 Justifying the Nonlinear Noise Model . 221

5 Experimental Results . 223
5.1 General Setting . 223
5.2 Artificial Label Noise . 224
5.3 Real Label Noise . 228
5.4 Effect of Batch Size . 230
5.5 Understanding Noise Model . 231

6 Conclusion and Future Work . 233
References . 233

Constructing a Convolutional Neural Network with a Suitable
Capacity for a Semantic Segmentation Task . 237
Yalong Jiang and Zheru Chi
1 Introduction . 238
2 Techniques to Fully Explore the Potential of Low-Capacity

Networks . 244
2.1 Methodology . 244

x Contents

3 Estimation of Task Complexity . 251
3.1 Methodology . 251
3.2 Summary . 256

4 Optimization of Model Capacity . 256
4.1 Methodology . 256
4.2 Summary . 264

5 Conclusion and Future Work . 265
References . 265

Using Convolutional Neural Networks to Forecast Sporting Event
Results . 269
Mu-Yen Chen, Ting-Hsuan Chen and Shu-Hong Lin
1 Introduction . 270
2 Literature Review . 271

2.1 Convolutional Neural Network Architecture 271
2.2 Related Research Regarding Sports Predictions 272

3 Research Methods . 273
3.1 Development Environment . 273
3.2 Research Process . 273
3.3 Experiment Design . 277
3.4 Performance Evaluation . 279

4 Experiment Results . 279
4.1 Dataset Description . 279
4.2 Results of Experiments 1 and 2 . 280
4.3 Results of Experiment 3 . 281
4.4 Results of Experiment 4 . 282
4.5 Discussion . 283

5 Conclusions . 284
References . 285

Heterogeneous Computing System for Deep Learning 287
Mihaela Maliţa, George Vlǎduţ Popescu and Gheorghe M. Ştefan
1 Introduction . 287
2 The Computational Components of a DNN Involved in Deep

Learning . 288
2.1 Fully Connected Layers . 289
2.2 Convolution Layer . 290
2.3 Pooling Layer . 292
2.4 Softmax Layer . 293
2.5 Putting All Together . 294

3 The State of the Art . 294
3.1 Intel’s MIC . 295
3.2 Nvidia’s GPU as GPGPU . 296
3.3 Google’s TPUs . 299
3.4 Concluding About the State of the Art . 300

Contents xi

4 Map-Scan/Reduce Accelerator . 302
4.1 The Heterogeneous System . 302
4.2 The Accelerator’s Structure . 303
4.3 The Micro-architecture . 304
4.4 Hardware Parameters of MSRA. 308
4.5 NeuralKernel library . 309

5 Implementation and Evaluation . 310
5.1 Fully Connected NN . 311
5.2 Convolutional Layer . 312
5.3 Pooling Layer . 315
5.4 Softmax Layer . 316

6 Conclusions . 317
References . 318

Progress in Neural Network Based Statistical Language Modeling 321
Anup Shrikant Kunte and Vahida Z. Attar
1 Introduction . 322
2 Statistical Language Modeling . 323

2.1 N-Gram Language Model . 324
3 Extensions to N-Gram Language Model . 325
4 Neural Network Based Language Modeling . 328

4.1 Neural Network Language Model (NNLM) 328
4.2 Recurrent Neural Network Language Models (RNNLM) 330
4.3 Long Short Term Memory Language Models (LSTMLM) 331
4.4 Bidirectional RNN . 332

5 Milestones in NNLM Research . 334
6 Evaluation Metrics . 336

6.1 State of the Art PPL . 337
7 Conclusion . 338
References . 338

Index . 341

xii Contents

Deep Learning Architectures

Mohammad-Parsa Hosseini, Senbao Lu, Kavin Kamaraj,
Alexander Slowikowski and Haygreev C. Venkatesh

Abstract Deep learning is one of themost widely usedmachine learning techniques
which has achieved enormous success in applications such as anomaly detection,
image detection, pattern recognition, and natural language processing. Deep learn-
ing architectures have revolutionized the analytical landscape for big data amidst
wide-scale deployment of sensory networks and improved communication proto-
cols. In this chapter, we will discuss multiple deep learning architectures and explain
their underlying mathematical concepts. An up-to-date overview here presented
concerns three main categories of neural networks, namely, Convolutional Neural
Networks, Pretrained Unspervised Networks, and Recurrent/Recursive Neural Net-
works. Applications of each of these architectures in selected areas such as pattern
recognition and image detection are also discussed.

Keywords Deep learning · Architectures · CNN · Unsupervised networks ·
Recurrent networks · Recursive networks · LSTM · Autoencoders · GAN ·
Attention · DBN
M.-P. Hosseini (B) · S. Lu · K. Kamaraj · A. Slowikowski · H. C. Venkatesh
Santa Clara University, Silicon Valley, CA, USA
e-mail: mhosseini@scu.edu; parsa@cac.rutgers.edu; mh973@cac.rutgers.edu

S. Lu
e-mail: slu1@scu.edu

K. Kamaraj
e-mail: kkamaraj@scu.edu

A. Slowikowski
e-mail: aslowikowski@scu.edu

H. C. Venkatesh
e-mail: hchincholivenkatesh@scu.edu

M.-P. Hosseini
AI Research, San Jose, CA, USA

In Collaboration with Electrical and Computer Engineering Department,
Rutgers University, New Brunswick, NJ, USA

Radiology Department, Henry Ford Health System, Detroit, MI, USA

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_1&domain=pdf
mailto:mhosseini@scu.edu
mailto:parsa@cac.rutgers.edu
mailto:mh973@cac.rutgers.edu
mailto:slu1@scu.edu
mailto:kkamaraj@scu.edu
mailto:aslowikowski@scu.edu
mailto:hchincholivenkatesh@scu.edu
https://doi.org/10.1007/978-3-030-31756-0_1

2 M.-P. Hosseini et al.

1 Background

Machine learning is a branch of artificial intelligence (AI) that entails algorithms
which enable computer systems to infer patterns from data. Machine learning has
a broad scope of applications including bioinformatics, fraud detection, financial
market analysis, image recognition, and natural language processing (NLP).

Traditional statistical machine learning techniques are limited in their ability to
process natural data in raw form because the patterns and the inferences that must
be made between them are complicated. They requires a lot of work from humans
to extract proper features in order to improve their performance. Representation
learning is then developed as a set of methods that allows a machine to automatically
discover the representations (features) needed for detection or classification of data.

Deep learning is a class of representation machine learning methods with multi-
ple levels of representation. It is composed of several simple but non-linear modules
that each transforms the representation from previous levels (starting with the raw
input) into a representation at a higher, slightly more abstract level. With the com-
position of enough such transformations, very complex features and inferences can
be learned. In general, all of the deep learning methods can be classified into one of
three different categories, which are Convolutional Neural Networks (CNNs), Pre-
trained Unsupervised Networks (PUNs), and Recurrent/Recursive Neural Networks
(RNNs).We will discuss them in detail in the following sections, but first, we discuss
how to train a deep learning model.

2 Training Procedure

In both deep learning and machine learning, predictive models utilize various under-
lying algorithms to infer mathematical relationships from training data. There are
mainly three types of learning methods, namely: supervised learning, unsupervised
learning, and semi-supervised learning. In the section below, we will discuss each
method in greater detail.

2.1 Supervised Learning

In supervised learning, the model is fed a training dataset containing both obser-
vations (i.e., inputs) as well as their corresponding outcomes (i.e., outputs) [11].
The model then infers the mathematical mapping from inputs to outputs which it
can use to classify future input test data points [7, 13]. Backpropagation, short for
backward propagation of errors, is a popular supervised learning technique used in
many artificial neural network architectures. In backpropagation, the weights of the
neural network’s constituent nodes are adaptively reconfigured to improve prediction
accuracy.

Deep Learning Architectures 3

2.2 Unsupervised Learning

In unsupervised learning, the model is fed with unclassified training data (i.e., only
inputs). Then, the model categorizes test data points into different classes by find-
ing commonalities between them. For example, let us assume we have an animal
classification scenario in which the dataset contains unclassified pictures of a variety
of animals. The model will sort through the dataset and extract different features
from the images in order to assist with classification. Some of the extracted features
could include the color of the animal and the size of the animal to name a few. Using
these features, the data may be grouped into different clusters. For example, images
containing a dog will ideally fall into the same cluster based on the semblance of the
extracted features; the same idea applies to the other animals found in the dataset.

2.3 Semi-supervised Learning

As its name suggests, semi-supervised learning inherits properties from both super-
vised learning and unsupervised learning. A semi-supervised data set primarily con-
tains unclassified training data points along with small amounts of classified data.
Semi-supervised models feature two important advantages. One, they are substan-
tially more accurate than unsupervised models with the addition of a few classified
data points. Two, they are significantly less laborious and time-intensive compared
to supervised learning. Semi-supervised learning may refer to either transductive
learning or inductive learning.

The goal of transductive learning is to infer the correct labels for the given unla-
beleddata. Self-training is a commonlyused transductivemethod for semi-supervised
learning. In this method, a classifier is first trained with the sample of labeled data.
Then the classifier is used to classify the unlabeled dataset.Normally themost assured
unlabeled data, along with their predicted labels, are appended to the training set.
The classifier is re-trained with the new data and the process is repeated. This pro-
cess of re-training the classifier by itself is called self-teaching or bootstrapping. The
model is then ready for classifying test data points. On the other hand, inductive
learning is used to deduce the mapping between input and output. Inductive gener-
ative models are possibly the oldest semi-supervised learning method. It assumes a
model, p(x, y) = p(y)p(x |y) where p(x |y) is a recognizable mixture distribution.
With large amounts of unlabeled data, the mixture components can be recognized;
then, we ideally require just one labeled example per component to fully determine
the mixture distribution.

4 M.-P. Hosseini et al.

Fig. 1 A condensed representation of Convolutional Neural Networks (CNN). It is a type of feed-
forward artificial neural network based on 3D neuronal arrangements, local connectivity between
neurons of adjacent layers, and shared weight vectors

3 Deep Learning Categories

In this section below,wewill discussmultiple deep learning architectures and explain
their underlying algorithms. An up-to-date overviewwill be presented for each of the
three main categories of neural networks, namely, Convolutional Neural Networks,
Pretrained Unspervised Networks, and Recurrent/Recursive Neural Networks.

3.1 Convolutional Neural Networks (CNNs)

CNNs are inspired by biological processes and are designed to mimic the neural
connectivity found in the brain’s visual cortex. They requires considerably less data
pre-processing compared to traditional image classification algorithmswhich require
hand-engineered pre-processing filters [6]. CNNs have a large range of applications
in image and video recognition, recommender systems, image classification, medical
image analysis, and natural language processing (NLP).

3.1.1 CNN Structure

CNNs differ from conventional neural networks as they perform convolution instead
of standard matrix multiplication in at least one of their layers (Fig. 1). They are
famous for two distinct attributes: sparse interactions and parameter sharing. Sparse
interactions or connectivity is achieved by making the model’s kernel smaller than
the size of the input. For example, in an image classification application, there may
be millions of pixels representing a high resolution image. In this case, the kernel
will be configured in a manner such that it only captures important features such
as contrast and edges which are more indicative of the objects in the image. With
fewer pixels of the image in consideration, there is a reduction in parameters to

Deep Learning Architectures 5

Fig. 2 A network on the left
without sparse and a network
on the right using sparse with
a kernel of 3

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

y(1)

y(2)

y(3)

y(4)

y(5)

y(6)

represent the image. This results in the reduction of memory utilization as well
as computational overhead. On the other hand, traditional neural networks are less
efficient and generate parameters for the interaction between each input unit and
output unit [14]. Parameter sharing, also referred to as tied weights, involves tying
the value of one input unit’s weight to another input unit’s weight. In the case of the
image classification scenario, parameter sharing would ensure that there is only one
set of parameters learned for each location of the image. This differs from traditional
neural networks in which weights are not tied and separate sets of parameters are
learned at each location.

Each layer of a convolutional network generally performs three steps. In the
first step, the layer parallely performs multiple convolutions to generate a set of
linear activations. After this, the second step—often referred to as the detector
stage—entails running the linear activations through a non-linear activation func-
tions. The objective of this is to ultimately infer a non-linear mapping to the output
as needed. The detector stage is followed by a third stage comprised of a pooling
function which makes further changes to the output of the layer. The purpose of a
pooling function is to modify the output of a particular location in the net based on
the statistical values of nearby outputs [9, 10, 18]. This emphasizes the convolutional
aspect of CNNs in which neighborhood values have an impact on any given node. In
the case of max pooling, the operation will modify an output value according to the
max value of its rectangular neighborhood region. Other popular pooling functions
consider the average value of the neighborhood region (Fig. 2).

Different weights are applied to different layers until the network is able to filter
the data and achieve a result. This works by having the main convolutional layer pool

6 M.-P. Hosseini et al.

and constructing feature maps based on different filters, or kernels. Each of these
layers are fully connected and ultimately achieve an output. CNNs are mainly used
for visual classification but can have many useful applications in text and language
detection, object tracking, action recognition, and other classifications. Equation1
below illustrates forward propagation implemented in a CNN, where ω is the n x n
filter andψ is the nonlinearityweightmatrix, Eq.2 represents the gradient component
for each weight, and Eq.3 represents the weights of the convolutional layer [6].

xli j = ψ
(∑n−1

a=0

∑n−1
b=0 ωab y

l−1
(i+a)(j+b)

)
(1)

∂E
∂xli j

= ∂E
∂yli j

∂yli j
∂xli j

= ∂E
∂yli j

∂
∂xli j

(ψ(xli j)) (2)

ωab = J

(∑n−1
a=0

∑n−1
b=0

∂E
∂xl(i−a)(j−b)

∂xl(i−a)(j−b)

∂yl−1
i j

)
(3)

J =
(∑n−1

a=0

∑n−1
b=0

∂E
∂xl(i−a)(j−b)

)−1
(4)

3.1.2 CNN Architectures and Applications

Since the initial development of CNN,multiple CNNarchitectures have been created.
Some notable examples include: LeNet-5, AlexNet, ResNet, and GoogLeNet. Each
of these networks still employ the same structure of convolutional layers and feature
extraction, but may vary in the number of layers they have, feature mapping, and
efficiency.

LeNet [19] is the first successful application of convolutional networks and was
developed by Yann LeCun in the 1990s. Of the CNNs, the best known is the LeNet
architecture which was used to read zip codes, digits, etc. The latest work is called
LeNet-5 which is a 5-layer CNN that reaches 99.2% accuracy on isolated character
recognition [20].

The first work that popularized convolutional networks in computer vision was
the AlexNet, developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hinton for
the University of Toronto [18]. The main difference is that AlexNet has multiple
convolutional layers followed by a POOL layer. It contains eight main layers, where
the first five layers are convolutional layers and the last three layers are fully con-
nected layers. Following the convolutional layers, there are additional max-pooling
layers that use the non-saturating Rectified Linear Unit (ReLU) activation function
instead of either the hyperbolic tangent or sigmoid activation functions. Using ReLU
increases the speed of AlexNet by a factor of six while maintaining similar accuracy.

Residual Neural Network (ResNet) was proposed in [4] by Microsoft Research.
The layers are reformulated while learning residual functions instead of unrefer-
enced functions. As a result these residual networks are easier to optimize and gain
considerable accuracy from increasing network depth.

GoogLeNet is a convolutional network designed by Szegedy et al. from Google
[29]. It is a much deeper CNN compared to AlexNet; GoogLeNet contains 22 layers

Deep Learning Architectures 7

compared to AlexNet’s 8 layers. GoogLeNet’s main contribution is the develop-
ment of an inception layer that reduces the number of parameters in the network.
Additionally, GoogLeNet uses the average pooling method at the top of the con-
volutional layers which further eliminates parameters that contribute minimal per-
formance gains. It is worth noting that GoogLeNet contains 4 million parameters
compared to AlexNet’s 60 million parameters. There are several followup versions
to the GoogLeNet, the most recent of which is Inception-v4.

While CNNs are versatile in various problem spaces, they still have limitations
in their architectures. CNNs are known to be prone to overfitting and getting stuck
at local minima. Both issues lead to lower model performance and higher compu-
tational time. Therefore optimization algorithms can be taken into consideration to
help compensate for the limitations of CNNs. An extended optimization approach
for CNN is proposed by Hosseini et al. [6] based on principle component analysis
(PCA), independent component analysis (ICA), and Differential Search Algorithm
(DSA). The proposed method can improve CNN’s efficiency and optimize its feature
extraction—particularly when dealing with a large scale complex dataset.

3.1.3 Forward and Backward Propagation

When data is inputted into a neural network, it initially advances through the network
through a series of layers in what is referred to as forward propagation. The network
can have various numbers of layers within the network which represents the depth
of the network, and also includes an input vector, x . Each layer, l, also has a width
which represents the number of nodes.Within each layer, we apply the weight matrix
to the activation function; the incoming data, a, is multiplied by a weight, w, and a
bias, b, is added to the result. In Eq.5, j is the output node and represents the jth
node from the lth layer, and k represents the kth node from the previous layer, l − 1,
which serves as the input node [1]. The value wl

jk , then, is the weight relationship
that exists between the two nodes from both layers. When the weight matrix and bias
are first setup, they are randomly initialized through a process known as parameter
initialization, with a0 being the layer containing the input data vector (Fig. 3).

zlj =
∑
k

wl
jka

l−1
k + blj (5)

The weighted input for the jth node in the lth layer, zlj , is then fed into an activation
function, f .

alj = f (zlj) (6)

The role of an activation function is to produce an output, or a mapping from an input
real number to a real number within a specific range in order to determine whether
or not the information within the node is useful, i.e., to activate the node or not. It
is the activation function which creates the layered design to the neural network;

8 M.-P. Hosseini et al.

X(1)

X(2)

Input Layer Hidden Layers Output Layer

Calculate LossActivation
Function

Fig. 3 A Neural Network using Back Propagation

an activation functions acts as a neural network layer by performing operations on
the original input data and feeding it forward into the next neural network layer
(activation function). The values produced by the activation function depend on the
type of activation function which is used. There is not always a clear or best choice in
deciding which activation function to use when designing the network; this process
requires some trial and error to determine which activation function will produce
the most optimum results. Some of the more common activation functions are listed
below.

The sigmoid function, which is also known as the logistic function maps to real
numbers with values ranging between 0 and 1.

f (x) = σ(x) = 1

1 + e−x
(7)

The hyperbolic tangent, tanh, activation function maps to real numbers with
values ranging between −1 and 1.

f (x) = tanh(x) = (ex − e−x)

(ex + e−x)
(8)

The Rectified Linear Unit (ReLU) activation function maps to real numbers with
values ranging from 0 to ∞.

f (x) = {0 f or x<0
x f or x≥0 (9)

The Softmax activation function maps to real numbers with values ranging from
0 to 1.

fi (�x) = exi∑ j
j=1 e

x j
(10)

Deep Learning Architectures 9

The initialized parameter values which were arbitrarily set are adjusted later on
as the network is trained. The data is said to be fed forward into the network and its
final result produces an output vector, ŷ. The loss is then calculated using the output
vector (see Eq.12).

The forward propagation equation can be reduced to the simple vectorized
equation

Al = f (Wl Al−1 + bl) (11)

Backpropagation is one method of training a network by minimizing the loss as
calculated by the cost function. The cost function represents how far off the network
is from making accurate predictions based on the input. There are many different
types of cost functions which may be used, one of which is the mean squared error
(12) [1].

C = 1

n

n∑
i=1

(yi − ŷi)
2 (12)

Algorithm 1: Forward and Backward propagation in CNN

Input: M-dimensional data, x = [x1, · · · , xN]T
begin
for l := 1 →#HiddenLayers do

for i := 1 →#RowunitinLayerl do
for j := 1 →#ColumnunitinLayerl do

Find the layer activations by, yli j = ϕ(xli j + bli j)
Compute next layer inputs

end
end

end
Keep the final output as yl

Calculate error at the output layer.
begin
for l :=#HiddenLayers → 1 do

Find error partial derivation by ∂E
∂xli j

= ∂E
∂yli j

∂yli j
∂xli j

= ∂E
∂yli j

∂
∂xli j

(ψ(xli j))

Find error at the previous layer.
end

Calculate the gradient of the error by ∂ωab =
N−n∑
i=0

N−n∑
i=0

∂E
∂xli j

∂xli j
∂ωab

=
N−n∑
i=0

N−n∑
i=0

∂E
∂xli j

yl−1
(i+a)(j+b)

END

where n is the number of data points. The mean squared error can be understood as
the average of the square of the difference between the desired, or expected output
and the actual output which was obtained by the network [17].

In order to optimize the cost function by minimizing the loss, the gradient descent
optimization algorithm is used and the errors are backpropagated up the chain toward
the front of the network. Gradient descent adjusts each weight by taking the negative

10 M.-P. Hosseini et al.

of the learning rate multiplied with the partial derivative of the cost function with
respect to the weights [1].

�w = −η
∂C

∂w
(13)

With backpropagation, we are able to compute the gradients all at once by updat-
ing the weights using the chain rule [1]. Using the chain rule, the weights for each
node are adjusted accordingly by multiplying the gradients together. Backpropaga-
tion has the added benefit that it greatly reduces the number of calculations required
to compute the gradients compared to forward propagation. If forward propagation is
used to update the weights, it suffers from the problem that for each weight, the cost
function must first be calculated prior to calculating the partial derivative of the cost
function with respect to the weight, resulting in a slow, intensive operation requiring
the number of parameters, squared, iterations through the network to compute the
gradients [26]. The network has to complete an entire forward iteration to calcu-
late the gradient for each individual node. With backpropagation, a single forward
propagation is performed to calculate the loss, and then a single backpropagation to
update the weights with respect to the loss is all that is required to update the network.
Backpropagation can also be understood from the pseudo-code in Algorithm1.

3.2 Pretrained Unsupervised Networks

Data generation and feature extraction are very important applications in deep learn-
ing as we usually have limited training data. There are different techniques used
to augment the initial dataset to provide a larger dataset from which to train the
network. Using some of the most advanced deep learning architectures like Genera-
tive Adversarial Networks (GANs) and Autoencoders, we could generate synthetic
data based off of the original dataset to improve model learning. Both architecture
belongs to a family called Pretrained Unsupervised Network (PUN). PUN is a deep
learning model that uses unsupervised learning to train each of the hidden layers in
a neural network to achieve a more accurate fitting of the dataset. An unsupervised
learning algorithm is used to train each layer one at a time, independently, while
using the previously trained layer as the input. After the pre-training is done on
each layer, a fine-tuning step is performed on the whole network using supervised
learning. Types of PUNs include Autoencoders, Deep Belief Networks (DBN), and
Generative Adversarial Networks (GAN) [25].

3.2.1 Autoencoders

Autoencoders use unsupervised learning to learn a representation for dimensionality
reduction where the input is the same as the output (Fig. 4). The three parts of an
autoencoder include the input, output, and the hidden layer. The data is compressed

Deep Learning Architectures 11

Fig. 4 A representation of an autoencoder. It uses unsupervised learning to learn a representation
for dimensionality reduction where the input is the same as the output

into a smaller representation in the hidden layer then uncompressed to form an output
that is similar to the input. This happens through two main steps of encoding and
decoding of the autoencoder algorithm [15]. For example, the following is used to
represent the mapping function between the input layer and hidden layer [24]:

y = f�(x̂) = s(Wx̂ + b) (14)

where the input x̂ is mapped to the hidden layer y, θ is the coding parameter, and W
is the weighted matrix. Therefore the decoding function would be the following:

z = g�′(y) = x(W ′y + b′) (15)

z would be the reconstruction of input x [24].
Autoencoders are a variant of feed-forward neural networks that have an extra

bias for calculating the error of reconstructing the original input [9]. After train-
ing, autoencoders are used as a normal feed-forward neural network for activations.
This is an unsupervised form of feature extraction because the neural network uses
only the original input for learning weights rather than backpropagation, which has
labels. They use unlabeled data in unsupervised learning and build a compressed
representation of the input data. An autoencoder is trained to reproduce its own input
data.

There are different types of autoencoders. Vanilla encoder is a three layered net,
where the input and output are the same. If one hidden layer is not enough, we can
obviously extend the autoencoder to use more hidden layers, known as multilayer
autoencoder. Convolutional autoencoder uses images (3D vectors) instead of flat-
tened 1D vectors. The input image is downsampled to give a latent representation of
smaller dimensions and forces the autoencoder to learn a compressed version of the
images. Regularized autoencoder uses a loss function that encourages the model to
have other properties besides the ability to copy its input to its output.

12 M.-P. Hosseini et al.

3.2.2 Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN) was first introduced by Ian Goodfellow
and others from the University of Montreal in 2014. GANs are able to mimic any
distribution of data in any domain: images, music, speech, and prose. GANs are an
example of a network that use unsupervised learning to train twomodels in parallel. A
key aspect of GANs (and generative models in general) is how they use a parameter
count that is significantly smaller than normal with respect to the amount of data
on which the network is trained. The network is forced to efficiently represent the
training data, making it more effective at generating data similar to the training data.
A GAN network is made up of a discriminator, D, and a generator, G, which operate
in parallel. The generator’s goal is to be able to create a fake output that resembles a
real output, with the generator training through its interactions with the discriminator
and not from any actual content [2]. The objective of the generator is to produce an
output that is so close to real that it confuses the discriminator in being able to
differentiate the fake data from the real data.

There are three steps in GANs. First, the generator takes in random numbers and
returns an image. This generated image is fed into the discriminator alongside a
stream of images taken from the actual dataset. Second, the discriminator takes in
both real and fake images and returns probabilities; an output close to 0 being the
data from the generator is fake and an output close to 1 being that the data is real.
Third, the discriminator network provides feedback to the generator in order to train
it and improve its output. GAN has the potential to be used in many applications and
has been used in improving the resolution of images [22]. Another useful application
using GAN has been the ability to create photos based on a detailed caption descrip-
tion, such as a caption stating “a yellow truck with white doors” used to generate a
corresponding image [27] (Fig. 5).

Fig. 5 A representation of a Generative Adversarial Network (GAN). It contains a generator net-
work and a discriminator network which generator creates a dataset from random noise to feed into
the discriminator to be able to differentiate the generated dataset from a real dataset

Deep Learning Architectures 13

3.2.3 Deep Belief Network

After discussing the different machine learning networks and how they operate, we
examine how these different networks have been used together. Neural networks can
be joined together in different combinations in series with one another. In order to
accomplish this, a link is established between each network. This is called as Deep
Belief Network (DBN). It is structured by connecting multiple, smaller unsupervised
neural networks, and forms an extensive layered connection. To understand the con-
cept further, we have to dig deep into the components of a DBN: Belief Net and the
Restricted Boltzmann Machine.

A Belief Net consists of randomly generated binary unit layers, where each of the
connected layers have been assigned a weight function. The range of these binary
units is from “0” to “1”, and the probability of achieving the value “1” depends on
the bias and weight factor inputs from the other connected units. Due to the layer-
by-layer learning, we can determine how a variable present in one layer can possibly
interact with those variables in another level. After the learning process, the values
of variables can be effectively inferred by a bottom-up approach starting with a data
vector in the bottom layer, and adding the generative weight function in the opposite
direction.

A Restricted Boltzmann Machine (RBM) is a stochastic Recurrent Neural Network
(RNN) consisting of randomly generated binary units, with undirected edges between
the units. Since the major limitation of RBM is scalability, they are observed to have
restricted connections between each of the hidden units.

3.3 Recurrent and Recursive Neural Networks

This class of deep learning structures has the ability to send data over time steps.
We introduce 4 structures in this class: 1. Recurrent Neural Network, 2. Recursive
Neural Network, 3. Long Short-term Memory (LSTM), 4. Attention.

3.3.1 Recurrent Neural Network

Recurrent Neural Network (RNN) is a class of deep learning based of the works of
David Rumelhart in 1986. RNNs are heralded for their ability to process and obtain
insights from sequential data. Therefore, video analysis, image captioning, natural
language processing (NLP), and music analysis all depend on the capabilities of
recurrent neural networks. Unlike standard neural networks that assume indepen-
dence among data points, RNNs actively capture sequential and time dependencies
between data.

One of the most defining attributes about RNNs is parameter sharing. Without
parameter sharing, a model allocates unique parameters to represent each data point

14 M.-P. Hosseini et al.

f(x)

New Information

Prediction

Fig. 6 A condensed representation of Recurrent Neural Network (RNN). It is a neural network that
recurs over time, which allows information to persist by loops. The f(x) represents some squashing
function

in a sequence and therefore cannot make inferences about variable length sequences.
The impact of this limitation can be fully observed in natural language processing.
For example, the sentences to decode are “Kobe Bryant is an incredible basketball
player” and “An incredible basketball player is Kobe Bryant”. An ideal model should
be able to recognize that ‘Kobe Bryant’ is the basketball player discussed in both
sentences regardless the position of the words. A traditional multilayer network in
this scenario would fail because it would create an interpretation of the language with
respect to the unique weights set for each position (word) in the sentence. RNNs,
however, would be more suitable for the task as they share weights across time steps
(i.e. the words in our sentence)—enabling more accurate sentence comprehension
[3] (Fig. 6).

RNNs generally augment the conventional multilayer network architecture with
the addition of cycles that connect adjacent nodes or time steps. These cycles con-
stitute the internal memory of the network which is used to evaluate the properties
of the current data point at hand with respect to data points from the immediate past.
It is also important to note that most conventional feedforward neural networks are
limited to one to one mapping for input and output [3]. RNNs, however, can perform
one to many, many to many (e.g. translating speech), and many to one (e.g. identify-
ing voice) mappings. A computational graph is used to depict the mappings between
inputs to outputs and loss. Unfolding the graph into a chain of events provides a
clear picture of parameter sharing within the network. A generalized equation for
recurrence relationships is

s(t) = f (st−1)) (16)

Deep Learning Architectures 15

Fig. 7 An unfolded computational graph for RNN. Each node is associated with an instance of
time

s(t) indicates the state of the system which is dependent on a previous time-step
indicated by t − 1. This equation can then be re-written as

h(t) = f (ht−1), x
(t);) (17)

where h(t) is now used to represent the state and x
(t)
denotes input from one particular

time instance. The significance of h(t) is that it is a representation of the task-relevant
aspects of the past sequence of inputs up to t [3] (Fig. 7).

Earlier versions of RNN architectures displayed great promise and versatility
but were associated with certain notable flaws. RNN structures, in theory, are able to
remember information for longperiods of time, however, in practice, this is not always
the case. Traditional RNN networks, also known as Vanilla RNNs, are especially
prone to a vanishing gradient and an exploding gradient—both phenomenon resulting
from propagation errors accumulated over many time steps. RNN works well in
referencing bits of information if the gap between references remains small. Where
RNN begins to suffer is when the gap between referenced data becomes large and
RNN is not always able to make links between this data. Long Short-Term Memory
(LSTM) and Truncated Backpropagation Through Time (TBPTT) are variants of
traditional RNN architecture proposed to rectify these issues. LSTM architecture
utilizes recurrent edges featuring fixed unit weights to counteract vanishing gradient.
TBPTT architecture sets a cutoff for the number steps through which error can be
propagated to rectify exploding gradient (Fig. 8).

Some other RNN architectures include Bidirectional Recurrent Neural Networks
(BRNN) and Encoder-Decoder Recurrent Neural Networks (EDRNN). BRNNS
deviate from the conventional causal structures utilized by most other RNN frame-
works. They make inferences from the current data point in a sequence relative to
both past and future data points. This is particularly useful for decoding the meaning
of sentences in which each word of the sentence is evaluated in the context of all
the values of the sentence. Furthermore, many subtle linguistic dependencies can be
extrapolated by considering a word’s left and right neighbors. It is also important
to note that many words and phrases used in sentences can have different mean-

16 M.-P. Hosseini et al.

Fig. 8 Bidirectional RNN
I(t-1) I(t) I(t+1)

F(t-1) F(t) F(t+1)

B(t-1) B(t) B(t+1)

O(t-1) O(t) O(t+1)

L(t-1) L(t) L(t+1)

T(t-1) T(t) T(t+1)

ings depending upon the context of the sentence. A bidirectional view enables the
model to have a higher probability of correctly extrapolating this context. In addi-
tion to NLP, BRNNs are also particularly useful in proteomics—identifying pro-
tein sequences from amino acid ordering—as well as in handwriting identification.
EDRNN is another versatile RNN framework that allows the RNN to be trained to
map an input sequence to variable length output sequences. This framework can be
very useful to decode speech as well as to automate responses to speech.

3.3.2 Recursive Neural Network

Recursive neural networks, not to be confused with RNNs, are a set of non-linear
adaptive models which are used to process data of variable length. They are espe-
cially proficient in processing data structure inputs. Recursive networks feed the
state of the network back into itself, in what can be viewed as a loop. They are
primarily suited for image and sentence deconstruction. The architecture of recur-
sive neural networks enables users to not only identify the constituents of input data
but also to quantitatively determine the relationships between them [3]. This kind

Deep Learning Architectures 17

Fig. 9 A condensed representation of Recursive Neural Network

of deconstruction is made possible through a shared-weight matrix and binary tree
structure—both of which enable the recursive neural network to extrapolate from
varying length sequences of images and words. Furthermore, one major advantage
of recursive nets over recurrent nets is that for a sequence of the same length n
the depth (measured as the number of compositions of nonlinear operations) can
be drastically reduced from n to log(n) which enables efficient capturing of long-
term dependencies [3]. Recursive neural networks are generally known for having
a bottom-up feed-forward method and top-down propagation method. Both mecha-
nisms constitute the propagation through structure that is prevalent in most recursive
networks (Fig. 9).

Two of the most commonly used varieties of recursive networks include the
semi-supervised recursive autoencoder and the supervised recursive neural tensor.
The recursive autoencoder is used to deconstruct sentences for NLP applications
whereas the recursive neural tensor is primarily used for computer vision applica-
tions. One drawback common to nearly all recursive neural networks is substantial
computational overhead—moreso than recurrent neural networks. Recursive net-
works are reputed for processing exorbitant amounts of data often containing mil-
lions of parameters which results in long training times. As a result, optimization
techniques are continuously developed for these architectures; furthermore, the ever-
growing sophistication of processors and advancements made in parallel computing
enable large-scale deployment of recursive neural networks.

18 M.-P. Hosseini et al.

3.3.3 LSTM

LSTM is the most common RNN architecture that remembers values over arbitrary
intervals. It was first introduced in 1997 by Hochreiter and Schmidhuber and works
well on making predictions based on time series data, avoiding the long-term depen-
dency problem that traditional, or vanilla, RNNs were plagued with. LSTM is also
well suited to classification and processing tasks and can be found in the Google
Translate, Apple Siri, and Amazon Alexa applications.

As previously mentioned, RNN suffers from a context problem which is
attributable to the phenomenon known as the vanishing gradient problem. The van-
ishing gradient problem occurs when gradient descent is used as an optimization
algorithm along with backpropagation [5]. As gap sizes increase between depen-
dencies, the error gradients vanish exponentially and may result in the training of a
network to become very slow or even unable to learn.

With stochastic gradient descent, the gradient is calculated based on the partial
derivative of the loss function with respect to the weights using backpropagation
using the chain rule [1]. Stochastic gradient descent is an optimized form of gradient
descent. While gradient descent optimizes the loss of all training samples in the
network, it is intensive because it optimizes the loss for each training sample; if there
are one million training samples, then the gradient is calculated one million times.
Using stochastic gradient descent, only one training sample is used to optimize

Fig. 10 An expansive computational graph for RNN

Deep Learning Architectures 19

I (1)

I (2)

I (3)

I (4)

V
U

U

U

U

W

V

W

V

W

O

T

L

Fig. 11 RNN chain to binary tree structure enables the recursive neural network to extrapolate
from varying length sequences of images and words

the parameters of the network, drastically reducing the time to train the network
[23]. Additionally, another method, minibatch gradient descent can also be used to
optimize the cost. Minibatch gradient descent instead uses n number of samples to
update the parameters throughout the network. Although stochastic gradient descent
will not reach the maximum optimization as compared with gradient descent, in
general, the accuracy is sufficiently close to the optimization and is greatly beneficial
when training a network with a large dataset [23] (Fig. 10).

Updates to the parameters in the network are applied using the chain rule. With
the chain rule, the gradients are calculated as the product of the derivative of the
cost function with respect to the weight from each node as it propagates back up
the chain toward the front of the network. The gradient is then used to update the
weights of the functions from earlier nodes. As the time dependency between lay-
ers increases, the weights are only marginally updated due to “vanishingly” small
calculated corrections to the weight [5] (Fig. 11).

Consider the calculated gradient with a value less than one; with backpropagation,
the weights are adjusted backward and if the gradients contain many small numbers
less than one, then the gradient becomes exponentially small the further back the
network it propagates; they become even smaller once multiplied by the learning
rates. Since weights are initially set to an arbitrary number when setting up a network
for training, they tend to initially have greater loss, compounding the problem of the
vanishing gradient problem since the weights are only marginally adjusted. LSTM
then addresses this problem by the use of different gates within its cell structures [5].

Different fromclassicalRNNnetworks, LSTMnot only canderive the information
from the current state but it can also acquire information from previous states [11].
The LSTM models are used as follows,

ft = σg(W f yt +U f ht−1 + β f) (18)

it = σg(Wi yt +Uiht−1 + βi) (19)

20 M.-P. Hosseini et al.

ot = σg(Woyt +Uiho−1 + βo) (20)

ht = ot ◦ σh(ct) (21)

ct = ft ◦ σt−1 + it ◦ σc(Wcyt +Uihc−1 + βc) (22)

where yt is the input vector, ht is the output vector, ct is the cell state vector; W, U,
and β are matrices and vector parameters; and ft , it , and ot are forget gate vector,
input gate vector, and output gate vector, respectively [12].

The critical components of the LSTM are the memory cell and its gates. There are
different variations of LSTM but they all predominantly include three gates, known
as the forget gate, input gate, and output gate. The contents of the memory cell are
modulated by the input gates and forget gates. Assuming that both of these gates
are closed, the contents of the memory cell will remain unmodified between one
time-step and the next. The gating structure allows information to be retained across
many time-steps, and consequently also allows gradients to flow across many time-
steps. This allows the LSTM model to overcome the vanishing gradient problem
that occurs with most Recurrent Neural Network models. The unfolded graph of an
LSTM network can be thought of as a conveyor belt, with the data passing along the
from one layer to the next, being altered slightly as it passes through each layer by
use of the input and forget gates using linear interactions.

The forget gate is responsible for removing information from the cell state and its
goal is to identifywhich information is no longer useful andmay be forgotten. It takes
2 inputs: the Hidden State from the previous memory cell, h(t−1), and the Current
Input, x(t), also known as the current cell state at that particular time step. The inputs
are multiplied by weight matrices and a bias is added. After that, a sigmoid function
is applied; the sigmoid function is responsible for deciding which values to keep and
which to discard. The function outputs a vector with values 0 to 1; a 0 indicates the
forget gate wants to forget the information completely while a 1 indicates the forget
gate wants to remember the entire piece of information.

The input gate involves a 2-step process and is responsible for deciding what
new information will be added to the cell state. Similar to the forget gate, a sigmoid
function is applied to h(t−1) and x(t). A hyperpolic tangent function creates a vector
of all possible values, ranging from −1 to 1. This vector indicates candidate values
which may be added to the cell state.

The output gate selects useful information from the cell state as output in a 3-step
process. In the first step, a hyperbolic tangent function is applied to cell state, creating
a vector with scaled values from −1 to 1. Step 2 is to use sigmoid function and use
the previous hidden state, h(t−1), and x(t) as inputs to create a regulatory filter. In the
final step, the regulatory filter from step 2 is multiplied with the vector from step 1,
producing an output and hidden state to the next cell. Using LSTM, the network is
able to minimize any long term dependencies and can bridge gaps in data references
in excess of 1,000 steps [5] (Fig. 12).

Deep Learning Architectures 21

Fig. 12 Attention network
hs

ht

at

ct

Local
Weights

Context
Vector

pt

Aligned
Position

ht' yt

Attention
Layer

3.3.4 Attention

Most contemporary neural network architectures utilize recurrence and convolution
mechanisms along with an encoder-decoder configuration. Attention networks use
an additional “attention” mechanism that is growing in popularity among numerous
architectures. Attention can be thought of similarly to how we focus our attention
on the task at hand. For example, if you are asked to fix paint a room, you put your
attention to the area of the room you are currently painting. If you are asked to fix a
damaged vehicle, then your attention is on the part of the vehicle you are currently
working on. Attention networks apply the same concept by focusing on specific areas
at different time steps.

Using attention, models display higher prediction accuracy by finding global
dependencies between data points without regard to their distance in both input and
output sequences [30]. In addition to this benefit, attention mechanisms also make
computations performed by the neural network more parallelizable. Attention mech-
anisms are generally used in conjunction with recurrence and convolution; in a small
fraction of neural network architectures, attention may entirely replace recurrence
and convolution schemes. Vaswani et al. have implemented such a novel architecture
devoid of recurrence known as Transformer. This architecture makes use of an atten-

22 M.-P. Hosseini et al.

tion scheme called self-attention or intra-attention, in which numerous relationships
are extrapolated between different positions of a data sequence [30]. Thus, by find-
ing more patterns from input data, the Transformer’s attention mechanism allows for
more robust model creation.

4 Conclusions

The incorporation of deep learning models have allowed for large amounts of data
to be correlated from multiple modalities. Built to emulate the structure of synaptic
connections in the human brain, deep learning architectures are ubiquitously used
for feature extraction, pattern analysis, and data abstraction. These models have been
shown to perform better and faster than current state-of-the-art analysis techniques
through supervised, unsupervised, and semi-supervised learning tasks. This chapter
has reviewed numerous common structures that have developed recently in the fol-
lowing three classes.

1. The convolutional neural network which is a powerful deep learning method
inspired by biological processes. It uses little pre-processing compared to other
machine learning algorithms, where traditional algorithms need hand-engineered
filters to preprocess data. It has a variety of applications from image recognition
to natural language processing, with a multi-layer structure containing convolution
layers, pooling layers, and fully connected layers.

2. The pretrained unsupervised networks which are a class of deep learning algo-
rithms which generate data and extract features. The main architectures of PUN
includes Autoencoders, Generative Adversarial Networks, and Deep Belief Net-
works. Using these architectures, we could generate similar data from the original
dataset to improve model accuracy.

3. The recurrent/recursive neural networks which are a class of deep learning
structures that have the ability to send data over time steps.We introduced 4 structures
in this class, including Recurrent Neural Network, Recursive Neural Network, Long
Short-term Memory, and Attention.

There is a large range of applications that deep learning algorithms could be used
for. They can be used to perform classification, data generation, and information
understanding. For various fields from autonomous driving to bioinformatics, and
medical image processing to assist the medical field in making accurate diagnoses
[8, 16, 21]. For example, many CNN architectures are developed for image recog-
nition tasks, including AlexNet and GoogLeNet. LSTM architectures have been
designed for natural language processing since they have shown high performance
in this application [28]. A CNN-based architecture called AtomNet [31] is designed
for drug discovery and successfully predicted some novel molecules for Ebola virus
Fig. 13. Deep and thorough researches has been done with using different deep
learning architectures to analyze multimodality in medical imaging techniques [12].

Deep Learning Architectures 23

Fig. 13 AtomNet is trained to recognize sulfonyl groups—a structure often found in antibiotics
[31]

Financial service companies developed deep learning algorithms to detect fraud and
prevent money laundering. The applications for deep learning expands every month
to every corner of academia and industry.

References

1. Boden, M.: A guide to recurrent neural networks and backpropagation. The Dallas project
(2002)

2. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Gener-
ative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press. http://www.
deeplearningbook.org (2016)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

6. Hosseini, M., Pompili, D., Elisevich, K., Soltanian-Zadeh, H.: Optimized deep learning for
EEG big data and seizure prediction BCI via internet of things. IEEE Trans. Big Data 3(4),
392–404 (2017)

7. Hosseini, M.-P.: Developing a cloud based platform as a service to improve public health of
epileptic patients in urban places. Reimagining Health in Cities: New Directions in Urban
Health Research, Drexel University School of Public Health, Philadelphia, USA (2015)

8. Hosseini,M.-P.: Proposing a newartificial intelligent system for automatic detection of epileptic
seizures. J. Neurol. Disorders 3(4) (2015)

9. Hosseini, M.-P.: A cloud-based brain computer interface to analyzemedical big data for epilep-
tic seizure detection. In: The 3rd Annual New Jersey Big Data Alliance (NJBDA) Symposium
(2016)

10. Hosseini, M.P.: Brain-computer interface for analyzing epileptic big data. Ph.D. thesis, Rutgers
University-School of Graduate Studies (2018)

http://www.deeplearningbook.org
http://www.deeplearningbook.org

24 M.-P. Hosseini et al.

11. Hosseini, M.-P., Hajisami, A., Pompili, D.: Real-time epileptic seizure detection from EEG
signals via random subspace ensemble learning. In: 2016 IEEE International Conference on
Autonomic Computing (ICAC), pp. 209–218. IEEE (2016)

12. Hosseini, M.P., Lau, A., Lu, S., Phoa, A.: Deep learning in medical imaging, a review. IEEE
Rev. Biomed. Eng. (2019)

13. Hosseini, M.-P., Pompili, D., Elisevich, K., Soltanian-Zadeh, H.: Random ensemble learning
for EEG classification. Artif. Intell. Med. 84, 146–158 (2018)

14. Hosseini, M.P., Soltanian-Zadeh, H., Akhlaghpoor, S.: Three cuts method for identification of
COPD. Acta Medica Iranica 771–778 (2013)

15. Hosseini, M.-P., Soltanian-Zadeh, H., Elisevich, K., Pompili, D.: Cloud-based deep learning
of big EEG data for epileptic seizure prediction. In: 2016 IEEE Global Conference on Signal
and Information Processing (GlobalSIP), pp. 1151–1155. IEEE (2016)

16. Hosseini,M.-P., Tran, T.X., Pompili, D., Elisevich, K., Soltanian-Zadeh, H.: Deep learningwith
edge computing for localization of epileptogenicity using multimodal rs-fMRI and EEG big
data. In: 2017 IEEE International Conference on Autonomic Computing (ICAC), pp. 83–92.
IEEE (2017)

17. Karnin, E.D.: A simple procedure for pruning back-propagation trained neural networks. IEEE
Trans. Neural Netw. 1(2), 239–242 (1990)

18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

19. Le Cun, Y., Jackel, L.D., Boser, B., Denker, J.S., Graf, H.P., Guyon, I., Henderson, D., Howard,
R.E., Hubbard, W.: Handwritten digit recognition: applications of neural network chips and
automatic learning. IEEE Commun. Mag. 27(11), 41–46 (1989)

20. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
22. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani,

A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-resolution using a generative
adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4681–4690 (2017)

23. Liang, N.-Y., Huang, G.-B., Saratchandran, P., Sundararajan, N.: A fast and accurate online
sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6),
1411–1423 (2006)

24. Liao, D., Lu, H.: Classify autism and control based on deep learning and community structure
on resting-state fMRI. In: 2018 Tenth International Conference on Advanced Computational
Intelligence (ICACI), pp. 289–294. IEEE (2018)

25. Patterson, J., Gibson, A.: Deep Learning: A Practitioner’s Approach. O’Reilly Media, Inc.
(2017)

26. Puskorius,G., Feldkamp,L.. Truncated backpropagation through time andkalmanfilter training
for neurocontrol. In: Proceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94), vol. 4, pp. 2488–2493. IEEE (1994)

27. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text
to image synthesis (2016). arXiv preprint arXiv:1605.05396

28. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

29. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition
(CVPR) (2015)

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polo-
sukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems,
pp. 5998–6008 (2017)

31. Wallach, I., Dzamba,M., Heifets, A.: AtomNet: a deep convolutional neural network for bioac-
tivity prediction in structure-based drug discovery (2015). arXiv preprint arXiv:1510.02855

http://arxiv.org/abs/1605.05396
http://arxiv.org/abs/1510.02855

Theoretical Characterization of Deep
Neural Networks

Piyush Kaul and Brejesh Lall

Abstract Deep neural networks are poorly understood mathematically, however
there has been a lot of recent work focusing on analyzing and understanding their
success in a variety of pattern recognition tasks. We describe some of the mathe-
matical techniques used for characterization of neural networks in terms of com-
plexity of classification or regression task assigned, or based on functions learned,
and try to relate this to architecture choices for neural networks. We explain some
of the measurable quantifiers that can been used for defining expressivity of neural
network including using homological complexity and curvature. We also describe
neural networks from the viewpoints of scattering transforms and share some of the
mathematical and intuitive justifications for those. We finally share a technique for
visualizing and analyzing neural networks based on concept of Riemann curvature.

Keywords Deep neural networks · Machine learning · Expressivity · Algebraic
topology · Betti numbers · Curvature · Riemannian geometry · Scattering
transform

1 Overview

Deep neural networks (DNNs), includingCNNs,RNNs,GANSand other variants are
the best performing machine learning algorithms for a broad range of varied pattern
recognition tasks, including classification, object detection, semantic segmentation,
speech recognition etc [1, 22, 23, 36, 39, 41]. The mathematical understanding of
neural network ofmore than one hidden layer is still rather limited, due to inadequacy
of mathematical models in effectively modeling the complex and non-linear hierar-
chical structures. This diminishes the ability of engineers to improve and customize

P. Kaul (B) · B. Lall
Electrical Engineering Department, Indian Institute of Technology, Delhi, India
e-mail: eez157544@iitd.ac.in

B. Lall
e-mail: brejesh@iitd.ac.in

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_2&domain=pdf
mailto:eez157544@iitd.ac.in
mailto:brejesh@iitd.ac.in
https://doi.org/10.1007/978-3-030-31756-0_2

26 P. Kaul and B. Lall

the networks in predictablemanner. Thoughback-propagation algorithmandgradient
descent based algorithms are widely effective, the optimizability and generalizability
of various network architectures is poorly understood. Hence some architectures fail
to converge to a good generalized solution, whereas others with slightly different
layers converge well [18].

In this chapter, we review some research areas which utilize techniques from sig-
nal processing theory and differential topology [6, 11, 26, 33] to develop methods
and techniques to better analyze, understand and visualize the effectiveness of DNNs
in varied pattern recognition tasks. These techniques can also be extended for intro-
ducing algorithmic and architectural improvements in neural network architectures,
including those for processing both Euclidean and non-Euclidean input data.

We start by describing in brief some mathematical concepts in topology theory
andRiemannian geometry that are prerequisites to understand rest of this chapter.We
also give a brief overview of upcoming field of geometric deep learning which uses
graph signal processing and other ideas to extend deep learning to non-Euclidean
data like graphs and manifolds [7, 40]. We do this in brief and without any proof.
Next we describe the concept of expressive power and currently known bounds on the
Vapnik–Chervonenkis dimensions [13, 21, 43] (VC dimension) of neural networks
based on concepts of algebraic topology, especially using Betti numbers [3–5]. We
also discuss some theoretical and empirical results for the same, which may have
practical implication in neural network architecture design [17].

Next we describe the approach of exploring neural nets by analyzing simplified
models using scattering transforms [2, 9, 28, 29, 44], which consist of wavelet
transform layers interleaved with non-linearities and model their invariance to dis-
tortions in data as diffeomorphisms utilizing the theory of Lie groups and topological
manifolds [14].

Lastlywe discuss somevery recent advances in themathematical understanding of
expressivity of deep neural networks utilizingRiemannian geometry. Someanalytical
and empirical results are also shared to show the variation in curvature onRiemannian
manifolds by propagating data through the neural network. We explain the research
on modeling deep learning networks by direct calculation of Riemannian and Ricci
curvature tensors and how this can be used to characterize, analyze and even possibly
aid in design of deep neural networks [34, 35, 37].

2 Neural Net Architecture

Though the details of neural network architecture and components are described
elsewhere and not focus of this chapter, we give a short overview of the components
to be able to define the terminology and mathematical representation for the basic
building blocks. Neural networks are computation structures with learnable parame-
ters which can be characterized as having multiple computational layers with layers
connected to each other through directed graphs. Deep neural networks, used to des-

Theoretical Characterization of Deep Neural Networks 27

ignate neural networks with more than one hidden layers, are not well understood
mathematically.

Neural Networks take a vector or tensor as input, which is then sequentially fed
through a series of processing layers. The layers are of various types depending on
the type of networks and the application. The layers include fully connected lay-
ers, convolution layers, pooling layers, non-linear activations, normalization layers,
loss layers, etc. Multi layer perceptrons (MLPs) consist only of fully connected lay-
ers interleaved with non-linear activations. Convolutional Neural Networks (CNNs)
have convolutional layers instead of fully connected layers in the initial phase of the
network. Recurrent neural networks (RNNs) are distinguished from other classes
by presence of components with memory e.g. long short term memory (LSTMs)
and gated recurrent units (GRU) [10, 19]. These networks can be used for classifi-
cation/regression of time series oriented data. Modern neural networks, especially
CNNs, can be very deep with hundreds of layers.

Multi layer perceptrons (MLP) are the simplest formof neural networks consisting
of fully connected layers couple with non-linearities (as shown in Fig. 1). The fully
connected layers can be modeled as matrix to vector multiplies. The non-linearities
are typically element-wise non-linear operations.

The CNNs consist of directed acyclic graphs (DAG) with nodes performing one
of the operations described above e.g. convolution, pooling etc. The interconnections
can be either parallel or serial or hierarchical (network within networks).In its sim-
plest form, CNNs have a set of convolutional layers alternating with rectified linear
units (ReLU) [15] layers in series (see Fig. 2). The CNNs are distinguished from
the MLPs by sharing of weights across spatial dimensions. The purpose of weight
sharing in spatial dimensions is to provide spatial invariance, which is a desired char-
acteristic when input are images. Hence convolutional neural networks are ideally
suited for object classification and detection networks working on image or video
datasets, which requires the property of spatial invariance. The spatial dimension is
reduced by introducing pooling layers, which will reduce the size of spatial dimen-
sions. The pooling also helps with introducing translational and rotational invariance
(or covariance) in the network. The final stages in convolutional networks may also
include one or more fully connected layers which are equivalent to convolutional
layers with filter of spatial size 1 × 1 and input of spatial size 1 × 1.

RNNs are family of neural networks that are used to process sequences. Analo-
gously to CNNs which share weight across spatial dimensions for images, the RNNs
shareweights across temporal dimension in sequences. The basic building block con-
sists of recurrent units, which have feedback connections from the output to input
and maintain state (memory). There are many types of recurrent units, but the most
common ones are gated units like long short termmemory (LSTM as shown in Fig. 3
and RNN using LSTM is shown in Fig. 4) and gated recurrent units (GRU). Besides,
fully connected multipliers and non-linearities, the ability to selectively learn, forget
and output the internal state based on learned coefficients is a feature of these gated
units, which provides them ability to keep a memory for sufficiently long periods of
time as required. The coefficients of gates are learned in the training processes.

28 P. Kaul and B. Lall

Fig. 1 Multi layer perceptrons. a a single neuron. bMLP with 2 hidden layers

Fig. 2 Example of a CNN (LeNet-5 [24])

Theoretical Characterization of Deep Neural Networks 29

Fig. 3 LSTM unit

We can model fully connected layers as matrix of coefficients to input vector
multiplication followed by point-wise nonlinearity. For CNNs, utilizing the im2col
[30] type input expansion can be used to convert the input feature map of any con-
volutional layer to a 2D matrix. Hence we can represent convolution as a product
between a matrix and a vector. Let the filter matrix be represented as F, and φ be the
expansion operator (im2col), the output of convolutional layer can be represented as
follows:

vec(y) = vec(xl+1) = vec(φ(xl)F). (1)

For a succession of layers with alternating convolutions and point-wise operator ρ
given by max(x, 0), we can represent the networks as

vec(y) = vec(...vec(φ(vec(φ(x1)F1))F2)...FJ). (2)

For more complex directed acyclic graphs (DAG) the same expression can be
extended. The neural networks are trained by minimizing a structural risk function
which includes a term used to measure the error between the prediction from the

30 P. Kaul and B. Lall

neural network represented by y(i) and the ground truth (ŷ)(i). Generally, the struc-
tural risk function of a model consists of a empirical risk term and a regularization
term, which can be represented as

θ∗ = argmin
θ

L(θ) + λ · Φ(θ) (3)

= argmin
θ

1

n

n∑

i=1

L
(
y(i), ŷ(i)

) + λ · Φ(θ) (4)

where Φ(θ) is the regularization or penalty term, and θ represents the parameters of
the model to be learned. There are many types of loss functions like mean squared
error (MSE), cross entropy, Kullback–Leibler divergence [12, 16] etc. A example of
a simple square l2 loss function can be the following:

L =
n∑

i=1

(y(i) − ŷ(i))2. (5)

LSTM

concat

X0

LSTM

LSTM

concat

LSTM

LSTM

concat

X2

LSTM

LSTM

concat

LSTM

X1 X3

fc

softmax

embedding

Fig. 4 Recurrent neural networks

Theoretical Characterization of Deep Neural Networks 31

3 Brief Mathematical Background

3.1 Topology and Manifolds

Topology is a branch of mathematics which deals with characterizing shapes, space
and sets by their connectivity. In topology, we express relationship between two
spaces through continuous maps between them.

Definition 3.1 Let M be a set and P(M) be the set of all subsets of M (i.e. power
set of M).
A setO ⊆ P(M) is called a topology, if all of the following properties are satisfied:

(i) O contains the null set and the set M itself.
(ii) any union of subsets of O is contained in O, or more formally, A ∈ O, B ∈

O =⇒ A ∩ B ∈ O.
(iii) lastly, any intersection of finite number of subsets of O is contained in O, i.e.,

Uα ∈ O, α ∈ I (I is an index set) =⇒ (⋃
α∈I Uα

) ∈ O.

The sets in O are called open sets.

The notion of topological equivalence (called homeomorphism) implies that there
exists a continuous map f : A �→ B for which the inverse function f −1 is also
continuous.

Definition 3.2 A function f : X �→ Y between two topological spaces (X, TX) and
(Y, TY) is called a homeomorphism if all of the following properties are satisfied:

– f is a both a one-to-one and onto mapping,
– f is continuous,
– the inverse function of f is also continuous.

A neighborhood of a point x in M is a set N (x) containing an open set which
contains the point x . A family of neighborhoods of x implies a set of points that
are “near to x”. A topological space is called Hausdorff (separated) if for any two
distinct points there always exist disjoint neighborhoods.

Definition 3.3 A paracompact Hausdorff topological space (M,O) is called a
d-dimensional topological manifold if ∀p ∈ M : ∃U ∈ O : p ∈ U, ∃ homeomor-
phism x : U → x(U) ⊆ Rd satisfying the following:

(i) x is invertible: x−1 : x(U) → U ,
(ii) x is continuous w.r.t. (M,O) and (Rd ,Ostd),
(iii) x−1 is continuous.

A d-dimensional topological manifold is locally homeomorphic to d-dimensional
euclidean space (Rn) at every point. So at every point in the manifold there exists a
mapping which maps an open set on the manifold to a part of the Euclidean space.
Such a mapping is called a chart. The set of such overlapping charts which cover the
entire manifold is called an atlas. Two overlapping charts are shown in Fig. 5.

32 P. Kaul and B. Lall

Fig. 5 Manifold. The two
regions U and V on the
manifold map to two
different maps φ(x) and
ψ(x) with some overlap

Definition 3.4 A curve on a manifold M is a smooth (i.e. C∞) map from some open
interval (−ε, ε) of a real line onto M.

Two curves σ1(0) and σ2(0) are tangent at a point p in M if σ1(0) = σ2(0) = p
and in some local coordinate system they are tangent in the usual sense of curves
inR.

A tangent vector p ∈ M is a equivalence class of curves in M where the equiva-
lence relation is that the two curveswill be tangent at point p.Wewrite the equivalence
class of a particular curve σ as [σ] (see Fig. 6).

A function with the three properties defined in Definition 3.2 is called
bi-continuous. If a bi-continuous function exists, we say X and Y are homeomor-
phic. For topological spaces, homeomorphisms form an equivalence relation. The
resulting equivalence classes are called homeomorphism classes. In case of smooth
manifolds, topological equivalence (homeomorphism) which retains smoothness is
called diffeomorphism.

Algebraic Topology assigns algebraic objects like groups, chains and similar
objects to topological spaces. Two spaces can be thought of a topologically equivalent
if the algebraic objects to which they are assigned are isomorphic. In the context of
characterizing neural networks, characterization can be done by topological connec-
tivity of the dataset. Then the expressivity of a particular neural network is assessed
to be their capacity to produce decision regions with the same connectivity. This
aspect is explained in more detail in Sect. 4.

Theoretical Characterization of Deep Neural Networks 33

Fig. 6 Tangent space Tx M of a single point, x, on a manifold

3.2 Riemannian Geometry and Curvature

A Riemannian manifold is any smooth manifold over which a symmetric tensor of
form (02) is defined. Such a tensor g is called a metric. If the metric is not positive
definite, then such geometry is called pseudo-Riemannian. At each location on the
manifold, such a metric gives a mapping between vectors spaces and their duals
(one-forms). A vector field is a vector valued function which assigns a vector to any
point on a manifold. For any vector field A(x) on a point x, there is a mapping given
by the metric to the dual vector field:

Ã = g(A, ·). (6)

The dual vector field Ã can be thought of as acting on B which is equivalent to a
standard dot-product. i.e.,

g(A, B) = Ã(B) = A · B. (7)

Einstein convention for summations is used in most of mathematical physics
literature involving relativity and gravitation. The same has been used here and
will be explained now. In this convention, indices are represented by subscripts

34 P. Kaul and B. Lall

and superscripts. Subscripts indicate contra-variant vectors and subscripts indicate
covariant vectors, in case those are included only once in the equation. In case a
equation has indices repeated both as top and bottom indices on separate terms,
those can be contracted i.e. thought as part of a summation, and the summation sign
can be omitted.

The derivatives of the fields are also represented in a shortened notation, with a
comma before the subscript variable indicating derivative is w.r.t. that variable:

∂ψ

∂α
= ψ,α . (8)

The co-vectors have gradients which are defined as:

(∂̃ψ) = (
∂ψ

∂α1
,

∂ψ

∂α2
,

∂ψ

∂α3
,

∂ψ

∂α4
...). (9)

Each of the components of the gradient of dual vector space can be given by a matrix
transformation Λβ

α as shown below:

(∂̃ψ)ᾱ = Λβ
α(˜∂ψ)β, (10)

The need for covariant derivatives and their relationship with standard derivatives
is not immediately apparent. To understand this we need to note that basis vectors in
case of curved co-ordinates can vary over space. To take the example of rectangular
and polar co-ordinates the field ez , which is the unit basis vector in direction z,
in Euclidean 3D space is constant across space. When we convert this to polar
co-ordinates, this field becomes dependent on the co-ordinates and hence is varying
across space.

ez = (Λr
z,Λ

φ
z) = (cosφ,−r−1sinφ), (11)

In this case we do not get zero derivative by component wise differentiation of ez
w.r.t. φ, though we would expect the derivative to be zero even in curved coordinate
system. Hence summation of derivatives of individual components of a vector is not
equivalent to the derivative of the vector itself. For taking care of this inconsistency,
covariant derivatives have to be introduced. Those are defined as follows:

∂A
∂zβ

= ∂

∂zβ
(Aαeα) (12)

= ∂Aα

∂zβ
eα + Aα ∂eα

∂zβ
, (13)

Here, the two terms constitute the partial derivatives of vector components and the
derivative of the basis vectors in the new coordinate system, respectively. This equa-

Theoretical Characterization of Deep Neural Networks 35

tion is complete for but the sake of simplicity, we additionally define Christoffel
symbols Γ

μ
αβ as follows:

∂eγ

∂zκ
= Γ ν

γκeν . (14)

The Christoffel symbol on the right can be inferred to be the μth component of
derivative of ∂eγ

∂xκ . We can consider γ the index for the basis being differentiated and
κ the coordinate against with the differentiation is done. Covariant derivative in (12)
is now:

(∇A)γκ = Aγ
;κ = Aγ

,κ + AνΓ γ
νκ. (15)

Please note that we are using the notation for differentiation indicated in in Eq.8
above. Christoffel Symbols are calculated from metric as follows [38]

Γ
γ
βμ = 1/2 ∗ gαμ(gαβ,μ + gαμ,β − gβμ,α). (16)

By definition, parallel transport of a vector A on a path parameterized by scaler λ
on any manifold is when the vector A is defined on all points on the path, and if the
vectors on infinitesimally close points can be considered to be almost parallel, even
if the vectors on further off points are not.

In Euclidean flat space, only straight lines parallel transport the tangent vector.
In curved space too, we can find analogous paths to straight lines (called geodesics)
by imposing the constraint that vectors on those get parallel transported along that
path. The geodesics are defined as.

d

dλ

(dxα

dλ

)
+ Γ α

μβ

∂xμ

dλ

dxβ

dλ
= 0. (17)

By definition Riemannian curvature can be thought of as the deviation in a vector
when we try to parallel transport it along a close loop in the given coordinate space.
Such a loop is shown in Fig. 7. The sides of the loop consist of lines x = a, x =
a + δa, y = b and y = b + δb.

As the unit vector passes through the loop composed of points P, Q, R, S and
reaches back to the original point P, we find the deviation of this vector at the end
compared to at the starting position. This deviation is given by:

δV α = δaδb[Γ α
μ1,2 − Γ α

ν2,1 + Γ α
ν2Γ

α
μ1 − Γ α

ν1Γ
α
μ2]V μ. (18)

Riemann Curvature is derived from the above calculation as a tensor of the form
(13) as given below.

Rα
βμν = Γ α

βν,μ − Γ α
βμ,ν + Γ α

σμΓ
α
σν − Γ α

σνΓ
α
βν . (19)

36 P. Kaul and B. Lall

Fig. 7 Loop in section of co-ordinate grid

We can also calculate the Riemannian curvature directly from the metric instead of
using Christoffel symbols.

Rα
βμν = 1

2
gασ(gσν,βμ − gσμ,βν + gβμ,σν + gβν,σμ). (20)

To calculate Ricci tensor, we can contract Riemann curvature on first and third
indices to give.

Rαβ = Rμ
σμβ (21)

Contracting Ricci tensor further gives the Ricci scaler.

R = gμνRμν = gμνgαβRαμβν . (22)

Curvatures metrics can be considered to be either intrinsic curvatures or extrinsic
curvatures. Extrinsic curvature can be measured only when the manifold space is
embedded in higher dimensions. For the simplest case of curves on planes, tomeasure
the curvature on a point, we first find the osculating circle Fig. 8, which a circle that is
the closest approximation of the curve at that point. The reciprocal of the radius of the
osculating circle is considered to be the extrinsic curvature at that point. On the other
hand we do not need embedding into a higher dimensional space in case of intrinsic
curvature, which can by definition be measured from within the manifold space
itself. The curvature tensors defined above are forms of extrinsic curvatures, namely
Riemann and Ricci curvature tensors. The most basic form of extrinsic curvature
is the Gaussian curvature. To find the Gaussian curvature around any point p in a
manifold, we need to find the circumference C of a circle of radius ε drawn with the
point as the center. Then Gaussian curvature can be calculated to be:

Theoretical Characterization of Deep Neural Networks 37

Fig. 8 Osculating circle

kGauss = lim
ε→0

6

ε2
(1 − C

2πε
). (23)

I.e. Gaussian curvature is a measure of how much the circumference of a circle
on the manifold varies from a circle of same radius in flat space (2πε). Note that
in flat space, the above equation will give value of zero for curvature. Riemannian
curvature, as explained above, is defined as a deviation of vector that is parallel
transported around a loop on a small parallelogram. It can also be thought of as a
collection of Gauss curvatures belong to multiple sub-planes. Given two non-parallel
vectors S and T, the following quantity calculated using Riemann curvature tensor
is equal to Gauss curvature:

kGauss = RμνρσS
μT νSρT σ. (24)

Hence Riemannian curvature is equal to the Gauss curvature of the subspace times
the area squared of ST parallelogram. Ricci curvature is contraction of Riemannian
curvature and can be though of as average of Riemann curvature across sub-planes.

3.3 Signal Processing on Graphs

Graphs can capture spatial and topological data [7]. Examples would include com-
puter graphics, wireless sensor networks, images, citation network analysis, com-
puter vision (3d object correspondence), graphs can be used to represent manifolds.
We do not cover characterization of neural networks through graphs in later sections,
but give a overview of signal processing techniques for performing deep learning of
graphs in this section

Assume G = (V, E, W) is a graph, where V represents the vertices, E the edges
and W the weights assigned to the edges. We also assume undirected graphs. Then
suppose

38 P. Kaul and B. Lall

– Vertex Signal is g(i) : V �→ R.
– Graph Signal is [g(1), g(2)...g(N)].

Let t define the Adjacency Matrix. It is given as

t = D − N . (25)

Here D is a diagonal degree matrix, which represents the number of connected edges
at each vertex, and N is the weight matrix representing the strength of each edge. For
a ring graph this would consist of

D =

⎡

⎢⎢⎢⎢⎣

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

⎤

⎥⎥⎥⎥⎦

since each vertex is connected two other vertexes, and

N =

⎡

⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎤

⎥⎥⎥⎥⎦

since in a ring graph only adjacent vertexes are connected.
The eigenvectors of a ring graph correspond to the Fourier basis. However, for a

more general graphs like the Peterson graph diagram shown in Fig. 9 we need to find
the eigenvectors of t .

Let the eigenvalues be represented as 0 ≥ λ1 ≥ λ2 ≥ ... ≥ λmax . Let the eigen-
vectors be represented as u(0),u(1), ...,u(n−1). Then the graph Fourier transform is
represented as

ĝ(λl) =
N∑

i=1

g(i)u(i)∗l, (26)

and graph Inverse Fourier Transform is given by

g(i) =
N−1∑

l=0

ĝ(λl)u(i)l . (27)

The issues with graph Fourier transform defined above is that many operators in
traditional signal processing are not directly available. Some examples include:

– Translation e.g. f (t − 3) is well defined in traditional signal processing. However
vertices are arbitrarily assigned and translation will be ill-defined on a graph.

Theoretical Characterization of Deep Neural Networks 39

Fig. 9 Petersen graph with random positive signal value shown as the height of the bar on top of
each vertex

– Modulation e.g. e2πiω0t f (t) is also well defined. However, eigenspectrum is not
continuous.

– Downsampling implies reducing the samples but what does every other vertex
mean in context of graph.

For example multiplication in graph spectral domain is defined as

ĝout (λl) = ĝin(λl)ĥ(λl). (28)

The corresponding filtering can also be done in vertex domain

gout (i) = bi,igin(i) +
∑

i, j∈N (ik)

bi jgin(j). (29)

Classical convolution is defined as

(f ∗ h)(t) =
∫

R
f (τ)h(t − τ)dτ . (30)

This cannot be directly generalized due to the term h(t − τ), which involves a trans-
lation. However, we can define

(g ∗ h)(i) =
N−1∑

0

ĝ(λl)ĥ(λl)u(i)l . (31)

Which enforces convolution in vertex domain equals to multiplication in graph
spectral domain for some constants {bi, j }i, j ∈ V Convolution can not be done in

40 P. Kaul and B. Lall

vertex domain but it an be done in spectral domain. Similar solutions can be done for
modulation, dilation, coarsening and downsampling. Finally CNNs can be trained
utilizing the above operator definitions and utilizing frequency domain convolutions.

4 Characterization by Homological Complexity

4.1 Betti Numbers

Let fN : RN �→ R represent a binary classifier feed-forward neural network with N
inputs and single output. Then the complexity of fN can be thought of as the topolog-
ical complexity of the set SN = x ∈ R

n| fN (x) ≥ 0. Essentially, this set represents
all the inputs for which the feed-forward neural network gives a positive class.

For any subset S ⊂ R
n , there exist n Betti numbers denoted by bi (S), 0 ≤ i ≤

n − 1. The first Betti number can be thought of as the number of connected compo-
nents in the set, while the i-th Betti number is the number of (i + 1)-dimensional
holes in S. For example, both the Sphere (Sπ) and the Torus (Sτ) have first Betti
number b0 = 1, since both have a single connected component. The second Betti
number for the sphere b1(Sπ) is 1, but for the torus b1(Sτ) is 2. For the sphere there
is a single two dimensional hole, since only one unique (deformable) circle can be
drawn on its surface. However for the torus, there are two such two-dimensional
holes, the first one being the circle which can be drawn over the central hole of the
torus, and the second one being the one that can be drawn across the cylindrical tube
forming the torus (see Fig. 10). These two holes are not mutually deformable to the
one another.

Betti numbers represent the topological notion of complexity. In particular the
sum of Betti numbers of a region SN , representing the positively classified regions
of a neural network is given by B(SN) = ∑

i Bi (SN). This can be used as a measure
of complexity of classification regions of a neural network.

Fig. 10 Sphere (left) and Torus(right)

Theoretical Characterization of Deep Neural Networks 41

Table 1 Upper and lower bounds on the growth of B(SN), for networks with h hidden neurons, n
inputs, and l hidden layers. Architecture with many layers will be called deep, architectures with
one hidden layer will be called shallow. Table taken from [5]

Inputs Hidden layers Activation function Bound

Upper bounds

n 1 Threshold O(hn)

n 1 Arctan O((n + h)n+2)

n 1 Polynomial, degree r 1
2 (2 + r)(1 + r)n+1

1 1 Arctan h

n Many Arctan 2h(2h−1)O((nl + n)n+2h)

n Many Tanh 2h(h−1)/wO((nl + n)n+h)

n Many Polynomial, degree r 1
2 (2 + rl)(1 + rl)(n−1)

Lower bounds

n 1 Any sigmoid h−1
n

n

n Many Any sigmoid 2l−1

n Many Polynomial, deg r ≥ 2 2l−1

Upper and lower bounds for sum of Betti numbers for a feed-forward neural
network as a function of number of layers l, number of hidden neurons n, and
number of inputs n, is derived in [5]. The table with various number of layers and
activation functions is given in Table1.

The existence of lower bound L implies that there is at-least one network N that
belongs to the class and for which B(SN) < L holds, whereas the existence of an
upper bound implies thatU holds for all networks in the class i.e B(SN) > U for all
networks.

Two important propositions that are suggested from the tables.

Proposition 4.1 For a feed-forward neural networks with single hidden layer, the
sum of Betti Numbers grows at at-most polynomial rate with the number of hidden
units h, i.e. B(SN) ∈ O(hn).

Proposition 4.2 In case there are more than one hidden units, B(SN) grows expo-
nentially with number of hidden units i.e. B(SN) ∈ Ω(2h).

The above propositions are also interlinkedwith theVapnik-Chervonenkis dimen-
sion (VC-dimension) [43]. It has been proven that the VC dimension for neural net-
works with arctan(·) or tanh(·) is O(p2) [3]. Thus VC-dimension is polynomial
with respect to number of parameters, and independent of number of layers. Since
it is proven that VC-dimension is independent of number of layers per se, while
the topological complexity is dependent on number of layers, it can be inferred that
deeper neural networks (compared with shallow neural networks with same number
of parameters) are able to tackle more complex application without losing general-
ization.

42 P. Kaul and B. Lall

Fig. 11 The positive label outputs of single hidden layer neural networks, h12 and h26, of 2 inputs
with 12 and 26 hidden units respectively after training on datasets D1 and D2 with positive examples
in red. Highlighted regions of the output constitute the positive decision region [17]

4.2 Architecture Selection from Homology of Dataset

The idea of measuring the homological expressiveness concerns the following prob-
lem: given a learning problem (dataset), which architecture is suitably regularized
and expressive enough to learn and generalize on the given dataset. This problem
can be tackled by defining a measure for complexity of dataset and characterizing
neural architectures by their ability to learn subject to that complexity.

An example of two different datasets D1 and D2, with different homological
complexities is given in figure Fig. 11. The dataset D1 gives the positive examples
sampled from the two disks and the negative samples from their complement. For
dataset D2, positive points consist of points sampled from two disk and two rings
with hollow centers. We see that no single hidden layer with ≤12, denoted h≤12, can
express the two holes and clusters in D2. On the other hand for D1, both h12 and h26
can express decision boundary perfectly.

Definition 4.1 Given a topological space U , with Betti numbers βn defined as the
holes of dimension n, we define the homology as the sequence H(U) = Hn(U)∞n=0
with each Hn(U) = Z

βn being the nth homological group. The first Betti number β0

corresponds to the number of connected components in the topological space.

From our first example set above, H(D1) = {Z1, 0, 0, 0, ...} since D1 has 2 con-
nected components and no holes of any dimension. For the second example set
H(D2) = {Z4,Z2, 0, 0, 0, ...}, since it has 4 connected components and two holes
of dimension 2.

4.3 Computational Homology

For calculating the homology of any set, we have to assume the points are sampled
from an actual geometric object. Since at small scales, each data point is isolated,

Theoretical Characterization of Deep Neural Networks 43

Fig. 12 Barcode from persistence homology [42]

the homology of any discrete set of points is trivially H(D) = (Z)M , 0, 0, 0... To
solve this problem Zomordian and Carlsson devised persistent homology [45] based
on homology of filterations of a space. Specifically, the filteration of a space X
equips it with sequence of subspaces X0 ⊂ X1 ⊂ X2... ⊂ X . A simple filteration
involves growing balls of size ε centered on each point and letting Xε be the resulting
filteration. As ε grows, the various points merge and form connected geometric
objects, leading to change in homology. There would also be new holes of various
dimension which are formed. In addition to formation, holes and connected objects
mayvanish ormergewith growing ε. This change inBetti numbers of Xε with growing
ε is summarized in persistence barcode diagram shown in Fig. 12. In the figure the
left end point of a bar is the point at which homology detects a particular component
and right end is where the component becomes indistinguishable. Suppose D is some
dataset drawn from a joint distribution F, on topological space X × {0, 1}, and X+
denote the distribution of positive labels and X− the distribution of negative labels.
Then Hs(f) denote the homology of positive decision region f (x) > 0. Finally let
F = f : X �→ 0, 1 be family of binary classifiers on X.

Theorem 4.3 Homological Generalization. If X = X−1 ∪ X+1 and for all f ∈ F
with Hs(f) �= H(X+), then for all f ∈ F there exists A ⊂ X+ so f misclassifies
every x ∈ A.

4.4 Empirical Measurements

The authors in [17] train fully connected networks with ReLU activation functions
with weights of each architecture initialized to samples from normal distribution
N (0, 1

β0
)

44 P. Kaul and B. Lall

Fig. 13 Table of estimated probabilities of different neural architectures to express certain homolog-
ical features of the data after training. Top: the probabilities of express homologies with increasing
β0 as a function of layers and neurons. Bottom: The probabilities of expressing β1 ∈ {1, 2} as a
function of layers and neurons [17]

They measure the mis-classification error over course of training and the homo-
logical expressivity at the end of training, with the later term defined as

E p
H (f,D) = min

{
βp(f)

βp(D)
, 1

}
. (32)

The above quantity measures the capacity of model to exhibit the true homology of
data. Convergence analysis of various neural networks suggest that those exhibit a
statistically significant topological phase transition during learningwhich depends on
the homological complexity of the data. For any dataset the best error of architectures
with l layers and h hidden units is strictly limited in magnitude and convergence time
by h phase. The authors conjecture from the experimental data (see Fig. 13) that

h phase ≥ C l
√

β0D. (33)

Also in order to select an architecture (l, h0) lower bounding h phase, and restricting
the analysis to single layer networks a lower bound estimate is obtained given by

ĥ phase(β0,β1) ≥ β1C
l

√
β0(D) + 2. (34)

Theoretical Characterization of Deep Neural Networks 45

5 Characterization by Scattering Transform

5.1 Overview

A series of papers by Stephane Mallat [2, 28, 29] and team have utilized group
theory and scattering transforms to analyze deep learning networks, assuming some
simplifications. Supervised learning can be defined as method for estimating the
mapping function between input data and generated labels, utilizing training data
that is supplied. Let there be q samples of training data, the estimated function be
f̃ (x) and the actual function be f (x), andΩ be a subset ofRd , which is the standard
d dimensional Euclidean space. Then:

{xi , f (xi)}i≤q for x = (x(1), ...x(d)) ∈ Ω. (35)

For regression problems, f (x) is in R and for classification f (x) is class index
from among all possible class indices. This problem is ill-defined if we do not make
further assumptions on f . The number of points N (ε)weneed to observe to guarantee
that | f (x) − f (x ′)| ≤ ε, is ≈ε−d . This is an instance of curse of dimensionality
implying that the number of samples required grows exponentially with dimension
of data d. However if there are known regularity properties in f , we will still be able
to estimate f (x) without exponentially growing number of samples. Assuming that
f is Lipschitz. I.e. the rate of change of output with input is bounded, is the simplest
regularity assumption. Formally we require:

∃C s.t. ∀(x, x ′)| f (x) − f (x ′)| ≤ C ||x − x ′||. (36)

Wecanpossiblyfind a contractive operatorφ, such thatφ(x) reduces the variability
of x . However the operator φ has to be constrained such that x belonging to differ-
ent classes still are separated after contraction, i.e. φ(x) �= φ(x ′) if f (x) �= f (x ′).
If the function is constant in certain directions, then we can carry out dimension-
ality reduction by projecting to a lower dimensional subspace. Otherwise, we need
to linearize x through non-linear transformations φ(x) such that the f (x) remains
constant in certain directions. The dimensionality reduction to lower subspace can
then be carried out. Effectively, we need to find Φ(x) such that f̂ (x) is the as close
estimate of f (x) as possible.

f̂ (x) = p(y = 1|x) = σ(wTΦ(x) + b) (37)

This implies that Φ(x) will linearize f (x) and the following holds.

aT (Φ(x) − Φ(x ′)) = 0 =⇒ f (x) = f (x ′). (38)

46 P. Kaul and B. Lall

For classification this implies that we maintain the minimum distance across
different classes.

∃ε ≥ 0 ∀(x, x ′) ∈ Ω2, |(|φ(x) − φ(x ′)|)| ≥ ε i f f (x) �= f (x ′) (39)

5.2 Invariants and Symmetries

Since the input data lie onhighly curvedmanifolds, f will linearize input successively
through the layers. Since classificationmaps regions in the inputmanifolds to specific
indices, these regions can be considered as level sets defined as Ωt = x : f (x) = t ,
where f is continuous. Since at the final layer we are able to fully linearize the input
and map different classes to different hyperplanes, the learned w is such that f (x) is
approximated by < φ(x), w >. Also if x belongs to class t , then < φ(x), w >≈ t .
Global symmetry can be thought of as an operator ϕ that leaves f invariant:

∀x ∈ Ω, f (ϕ(x)) = f (x) (40)

The impact of the symmetries can be of two distinct but related forms:

(i) Invariance: φ(ϕ(x)) = ϕ(x) for each x
(ii) Equivariance: φ(ϕ(x)) = ϕ(φ(x)) for each x, ϕ

To satisfy the above, we need invertible operators g such they leave the value of
f unchanged i.e. f (g.x) = f (x) for all x ∈ Ω . We note that composition of two
global symmetries g1 and g2 is also a global symmetry g1.g2. Since an identity and
inverse element is always present, and group closure holds, these symmetries form
a group. Such differentiable manifolds with a group structure are called Lie groups
[14]. We say that G is group of local symmetries of f if:

∀x ∈ Ω, ∃Cx > 0, ∀g ∈ G wi th |g|G < Cx , f (g.x) = f (x) (41)

Examples of symmetries for images include

(i) Translations {ϕv, ; v ∈ R
2},with ϕv(x)(u) = x(u − v).

(ii) Dilations {ϕs; s ∈ R+},with ϕs(x)(u) = s−1x(s−1u).
(iii) Rotations {ϕθ; θ ∈ [0, 2π]}, with ϕθ(x)(u) = x(Rθu).
(iv) Mirror Symmetry: {e, M}, with Mx(u1, u2) = x(−u1, u2).

All the above transformations can be combined in the affine group A f f (R2) with
6 degrees of freedom in the representation.

Theoretical Characterization of Deep Neural Networks 47

5.3 Translation and Diffeomorphisms

Global symmetries are tough to find so we first use local symmetries. These can
be modeled as a group of translations and diffeomorphisms which deform signals
locally. In image and speech recognition applications, no high dimensional symmetry
groups exist, however stability to local deformations is expected (see Fig. 14). Let

x ∈ L2(Rm), τ : Rm �→ R
m . (42)

Then
xτ = ϕτ (x), xτ (u) = x(u − τ (u)). (43)

where ϕτ is a change of variables. The term xτ is deforming pixel locations, instead
of pixels themselves.

The simplest Lie Group of transformations is the translation group G = R
n . The

action of g ∈ G = Rn over x ∈ Ω is g.x = x(u − g). Since translations are defined
by limited number of parameters (only two in images, offsets in x and y dimensions),
those are not very powerful symmetries. Also diffeomorphism symmetries are appli-
cation and dataset specific e.g. in case of MNIST digits, some transformation leave
the digit unchanged while other would change it [25]. For linearizing local symme-
tries we use the transformation φ(x) which linearizes the action of g ∈ G locally. By
definition, Φ is Lipschitz continuous if

∃C > ∀(x, g) ∈ Ω × G, ||Φ(g.x) − Φ(x)|| ≥ C |g|G ||x || (44)

Here |g|G measures difference between g ∈ G and identity and is the euclidean
norm of g ∈ R

n . We note that a bounded operator g closely approximates
φ(x) − φ(g.x) if the norm of g is sufficiently small.

Fig. 14 Local deformations in an image [8]

48 P. Kaul and B. Lall

5.4 Contraction and Scale Separation by Wavelets

To evaluate stability, we first need to quantify the amount of deformation. Also,
we need to find a notion of scale: in many applications, we are interested in local
invariance rather than global group invariance. Deep convolutional networks are
covariant rather than invariant to translations. Hence translation in the input lead to
translations in the output for convolutional layers. However to make the computation
invariant to translations scales need to be separated and non-linearities need to be
applied. A linear operator computes local invariants to action of translation group G.
This is done by taking mean of x on the orbit {g.x}g∈G . This is done by convolution
with a kernel φJ (u) = 2−nJφ(2J u) of size 2J with

∫
φ(u)du = 1:

φJ x(u) = x � φJ (u). (45)

This is verifiable that the averaging is Lipschitz continuous to diffeomorphisms for
all x ∈ L2(Rn) over a translation range 2J . However, it eliminates variations in the
input above frequency 2J . If J = ∞ it eliminates almost all information.

We use wavelets of different scale to separate variations at different scales.
K wavelets are defined ψk(u) of u ∈ Rn . These are dilated by 2 j : ψ j,k(u) =
2− jnψk(2− j u). Using convolutions with wavelets we can compute the average of
x at scales 2J and variations at scales 2 j ≥ 2J . This convolution operation is con-
tractive and the representation obtained is sparse. For audio signals n = 1, and K =
12 intermediate frequencies are used within octave 2J . For images n = 2, we utilize
πk
K orientations which are rotated. e.g. we use J = 4, K = 4, as shown in Fig. 15.

5.5 Filter Bank, Phase Removal and Contractions

We utilize a cascade of filters at different scales to compute the scattering trans-
form with wavelets. At each scale we use filters w j,k which compute the wavelets
ψ j,k = w j,k ∗ φ j−1. Also at every stage we perform averaging at a increased scale by
utilizing the filterw j,0 to compute φ j = w j,0 ∗ φ j−1.Wavelet coefficients x j (u, k) =
x ∗ ψ j,k(u) oscillate at scale 2 j , and averaging x j with φ j would output a zero sig-
nal. Hence non-linearities are required to remove oscillations. Modulus(ρ(α) = |α|)
is one such non-linearity which computes the positive envelope. We can also use
the ReLU given by max(m,0), which is also contractive operator similar to modu-
lus. Any non-linear operator for which |ρ(α) − ρ(α′)| ≤ |α − α′| can be considered
contractive. Averaging (ρ(x ∗ ψ j,k(u))withφJ output positive coefficients which are
locally invariant at scale 2J . Local multiscale invariant examples aremel-spectrum in
speech and SIFT in images. They have information loss due to averaging and hence
are calculated at small scales (e.g. 162 pixels for SIFT). Due to this they don’t capture
large scale structure and also fail to capture scale interactions. Scattering transform
using wavelet modulus operators is shown in Fig. 16.

Theoretical Characterization of Deep Neural Networks 49

Fig. 15 Wavelet filters [29]

5.6 Translation Groups

Deep neural networks are composed of a cascade of linear filters (convolution or
fully connected) layers interleaved with point wise non-linearities ρ. For simplicity,
an architecture where the convolutional filter do not add across the input channels is
used.

Suppose x j (u, k j) is computed by convolving single channel x j−1(u, k j−1)

along u, where j is the layer index. Then

x j (u, k j) = ρ(x j−1(., k j−1) ∗ w j,h(u)) with k j = (k j−1, h). (46)

Iterating over j defines a convolution tree

xJ (u, kJ) = ρ(ρ(ρ(ρ(x ∗ w1,h1) ∗ ...)∗) ∗ wJ−1,hJ−1)) ∗ wJ,hJ)). (47)

For m = 1, coefficients xJ (u, kJ) = ρ(x ∗ ψ j1,k1) ∗ φJ (u) are the wavelet coef-
ficients. For m = 2, ρ(ρ(x ∗ ψ j1,k1) ∗ ψ j2,k2) ∗ φJ (u) are complementary invariants
measuring interactions of x at scale 2 j1 within a distance 2 j2 and along orientation
and frequency bands defined by k1 and k2. See Fig. 17. It is noted that in case of
images and speech most of the energy is contained in the first two stages i.e. m ≤ 2.

If x is stationary than ρ(...ρ((x ∗ φ j1,k1) ∗ ψ j2,k2 ...) remains stationary because
convolutions and point-wise operators preserve stationarity. For a rectifier ormodulus
ρ(α) = α forα ≥ 0. So the ρ at output of averaging filter can be removed. For a band-

50 P. Kaul and B. Lall

Fig. 16 The scattering transform includes wavelet operators followed by modulus operators in
cascade forming a tree structure. At each stage, the coefficients are also averaged through the low
pass operator φ [2]

Fig. 17 Scattering coefficients

pass filter the non-linearity removes the phase or sign, which has strong contraction
effect. We can remove ρ from all low pass filters, then cascade of J convolutions
reduces to m (number of bandpass filters).

Theoretical Characterization of Deep Neural Networks 51

Fig. 18 Inverse scattering compared to Gaussian process. First row: original textures. Second row:
Gaussian process with covariance identical to first row. Third row: inverse scattering performed
with first two orders of scattering coefficients [29]

5.7 Inverse Scattering and Sparsity

Scattering transforms are not invertible. However for a given φJ (x)we can try to find
x̃ such that ||φJ (x) − φJ (x̃)|| < σJ . This can be possibly be achieved by initializing
x̃0 with white Gaussian noise and using gradient descent while trying to reduce
||φJ (x) − φJ (x̃n)||. In the Fig. 18, first row is the original texture. The second row
shows aGaussian processwith same covariance as the original texture infirst row.The
third row shows the inverse scattering as described above using scattering coefficients
with order m <= 2, 2J = N and K = 8. As can be seen from the Fig. 18, scattering
coefficients are able to reproducemuchmore likeness in texture than gaussian process
with first two moments identical to original figure.

6 Characterization by Curvature

6.1 Mean Field Theory and Gaussian Curvature

The method described in [34] analyze deep neural networks using a combination of
Riemannian curvature and mean field theory. For simplicity of analysis they assume
that neural networks are having random weights. They driving intuition here is that
DNNs can represent generic random functions. Also DNN can disentangle curved
manifolds at the input into flat manifolds at output. Finally deeper neural networks

52 P. Kaul and B. Lall

with same number of neurons can do this disentanglement more effectively than
shallow networks.

Consider a DNN with D layers of weights w1...wD and D + 1 layers of vectors
x0, ...xD with Nl neurons in layer l, xl ∈ R

N
l and wl ∈ R

Nl×Nl−1 . The output of filter
w and biases bl , with non-linearity φ at layer l, for an input x0 are given is given by:

xl = φ(hl), hl = wl xl−1 + bl (48)

Here hl is the out of the filter at layer l, and φ is a point-wise non-linearity that acts
on hl to generate xl . The weights and biases are initialized with gaussian random
variables distributed as follows:

– wl
i j ∼ N(0,σ2

ω/Nl−1).

– b ∼ N(0,σ2
b).

As a simple manifold propagates forward through the neural network, the modifi-
cation in its geometry is to be measured. The normalized squared length at input of
layer l is defined as

ql = 1

Nl

Nl∑

l−1

(hli)
2 (49)

Through central limit theorem, this quantity will converge to zero mean Gaussian
random variable for large Nl . As this distribution is processed through the layers and
iterative map of ql based on layer index l can be obtained in Eq.49

ql =V (ql−1|σω,σb) = σ2
ω

∫
Dzφ(

√
ql−1z) + σ2

b for l = 2, ..., D, (50)

where

Dz = dz√
2π

e−z2/2 (51)

is the standard Gaussian measure and z is a dummy variable and initial condition is

q1 = σ2
wq

0 + σ2
b (52)

and q0 represents the length in to the first layer defined as

q0 = 1

N0
x0x0. (53)

The function V (in Eq.50) is iterative variance, which predicts change of length as
input passes through the network. It is a concave function whose interaction with
unity line determines its fixed points q∗(σω,σb). As can be seen from Fig. 19

Theoretical Characterization of Deep Neural Networks 53

Fig. 19 Variation of squared ql for network with tanh non-linearity and 1000 hidden units. a And
length map has been shown for different σw at σb. Solid lines represent theoretical predictions while
simulation results are shown with dots. Fixed points q∗ of the map are shown as stars. b The length
map changes through the layers and converges within a few layers to q∗ in all cases (lines=theory;
dots=simulation). c The fixed point is shown as a function of σw and σb. d Number of layers in
which the fractional deviation from the fixed point is less than one. The (σb; σw) pairs in (a, b) are
marked with color matched circles in (c, d) [34]

1. for σb = 0,σω < 1, the only intersection is q∗ = 0, and hence network shrinks
all inputs to zero.

2. for σw > 1 and σb = 0, q∗ = 0, the fixed point becomes unstable and length map
acquires second nonzero but stable fixed point, and the network contracts large
inputs and expands small inputs.

3. for any nonzero bias σb the length map has single stable non-zero fixed point. In
this case the injected bias prevents the signal from decaying to zero.

Transient Chaos: If we consider two inputs, x0,1 and x0,2, the geometry of these
two input can be represented by 2 × 2 matrix for inner products given by.

qlab = 1

N

Nl∑

i=1

hli (x
0,a)hli (x

0,b) a, b ∈ 1, 2. (54)

The terms q1
11 and q

l
22 is the length that can be directly inferred from Eq.50. For the

non-diagonal terms, a correlation map C can be inferred for ql12:

ql12 = C(cl−1
12 , ql−1

11 , ql−1
22 |σω,σb)

= σ2
ω

∫
Dz1Dz2φ(u1)φ(u2) + σ2

b,

where

u1 =
√
ql−1
11 z1, (55)

u2 =
√
ql−1
22

[
cl−1
12 z1 +

√
1 − (cl−1

12)2z2

]
, (56)

54 P. Kaul and B. Lall

Fig. 20 Variation of the correlation, cl12, as it passes through layers in randomly weighted network
with tanh non-linearity. a The C-map is shown for the case σw and σb = 0.3 as in Fig. 19. b The
change in C-map is shown. Solid lines are theory whereas dots are for simulations using Nl equal
to 1000. c Fixed points c∗ of the C-map. d The slope of the C-map at 1, χ1, partitions the space
(black dotted line at χ1 = 1) into chaotic (χ1 > 1, c∗ < 1) and ordered (χ1 < 1, c∗ = 1) regions
[34]

and correlation coefficient is defined as:

cl12 = ql12(q
l
11q

l
22)

−1/2. (57)

Here z1 and z2 are uncorrelated Gaussian variables, while u1 and u2 are correlated
Gaussian variables with covariance matrix < uaub >= ql−1

ab .
Since length of eachpoint converges rapidly toq∗(σω,σb) aswepropagate through

the network we can substitute this value. We can compute c∗ by setting ql11 = ql22 =
q∗(σω,σb) and dividing by q∗. We can thus obtain an C-map (correlation coefficient
map):

cl12 = 1

q∗C(cl−1
12 , q∗, q∗|σω,σb). (58)

The C-map always has a fixed point c∗ = 1. The stability of fixed point depends on
the slope of the map at 1, which is

χ1 = ∂cl12
∂cl−1

12

|c=1 = σ2
ω

∫
Dz[φ′(

√
q∗z)]2.

Then three regions are possible based on value of χ1 (see Fig. 20):

– for small σω, c∗ = 1 is the only fixed point and is stable as χ1 < 1 and any two
points converge as they propagate through network.

– as σω increases, χ1 crosses 1 and a new c∗ is created, different from 1.
– for larger σω the strongweights overwhelm the biasesmaking the input decorrelate
and orthogonal, leading to stable fixed point at c∗ = 0.

Hence χ1(σw,σb) = 1 yields a phase transition boundary in the (σw,σb) plane
separating it into chaotic phase andorderedphasebasedupon separation/convergence.
We note that log χ1 is the Lyapunov exponent in dynamical system theory.

Theoretical Characterization of Deep Neural Networks 55

Propagation Through Deep Net. We can now try to track the length of a manifold
as it propagates through a deep neural network. At the first layer

hl(0) = hl(x0(θ)), (59)

where x0(θ) is a 1-D manifold with θ being intrinsic scaler coordinates. We can
choose a circle defined as:

√
N1q

[
u0cos(θ) + u1sin(θ)

]
, (60)

where u0 and u1 are orthonormal basis for 2-dimensional subspace of RN . At each
point, the manifold h(θ) has tangent or velocity vector.

v(θ) = ∂θ(h(θ)). (61)

Curvature is related to acceleration which is defined as rate of change of velocity.

a(θ) = ∂θ(v(θ)) (62)

At each point θ, v(θ) and a(θ) span a 2D space of RN . The osculating circle is defined
as circle with radius R(θ) such that it has same position, velocity and acceleration
as h(θ) at θ

Extrinsic curvature is defined as

k(θ) = 1

R(θ)
, (63)

Also extrinsic curvature is related to velocity and acceleration as:

k(θ) = v.v − 3/2
√

(v.v)(a.a) − (v.a)2. (64)

Total curve length as per Euclidean metric is

LE =
∫ √

gE (θ)dθ. (65)

where
gE (θ) = v(θ).v(θ). (66)

For k dimensional manifold M embedded in R
N the Gauss map maps a point

θ ∈ M to its k dimensional tangent plan TθM ∈ Bk,n where Bk,n is Grassmanian
manifold of all k-dimensional spaces. Gauss Map takes a point θ on the curve and
maps it to unit velocity vector v̂(θ) = v(θ)/

√
v(θ).v(θ). Gauss metric is related to

extrinsic curvature and Euclidean metrics by

56 P. Kaul and B. Lall

gG(θ) = k(θ)2gE (θ). (67)

Length of curve under Gauss Map is

LG =
∫ √

gG(θ)dθ. (68)

Extrinsic curvature and Euclidean metric change iteratively as they propagate
through the layers as

gE,l = χ1g
E,l−1,

(kl)2 = 3
χ2

χ1
+ 1

χ1
(kl−1)2,

gE,l = q∗,

(k1)2 = 1/q∗,

χ2 = (σω)2
∫

Dz[φ′′
(
√
qz]2,

where χ2 is defined analogously to χ1.
If the circle is scaled up i.e. hθ = χh(θ), then the length of LE and radius scale up

by χ but curvatures scales by χ−1 so LG doesn’t change. However, in deep networks
this is not the case and LG also increases. In sigmoidal neural networks the evolution
behaves differently depending on value of χ1.

For Chaotic phase χ1 > 1: The euclidean metric gE grows exponentially with
depth due to multiplicative stretching through χ1. The stretching attenuates any
curvature in layer l − 1 by factor of 1/χ1 but new curvature is added due to χ2, due
to single neuron non-linearity. So unlike linear expansion, extrinsic curvature is not
lost but ultimately approaches k∗. This implies global curvature measure LG grows
exponentially with depth (see Fig. 21).

This shows that DNNs become highly curved functions allowing to compute
exponentially convex function over simple low dimensional manifolds. Also the
length of curve grows exponentially with depth but only grows as square root with
width.

6.2 Riemannian and Ricci Curvature Measurement

The previous technique relies on analysis of neural network with random weights.
However, the real-world networks are trained using stochastic gradient descent and
hence are not truly random. Also, the above technique does not give a fine-grained
view of behavior the neural network for various multi-dimensional manifolds of
transformations. A recent algorithm [20] that works on premise of analyzing trained

Theoretical Characterization of Deep Neural Networks 57

Fig. 21 A one dimensional manifold circle is being input to three different neural networks with
different σw and fixed σb = 0.3. a PCA is used for projecting the hidden layer outputs in simulations
to a 3 dimensional subspace for plotting. Only layer 5, 10 and 15 are shown. The inset graph shows
relative energy of first five principal components. For σw = 4, the maximum energy singular values
are more evenly distributed, and the circle gets more tangled with each succeeding layer. b The
variation in autocorrelation, cl12(�θ) = ∫

dθql (θ; θ + �θ)/q∗, is shown across multiple layers.
c The theoretical prediction for the auto-correlation along with mean and standard deviation of
measured auto-correlation is shown. From [34]

neural networks based on differential geometric context, tries to overcome these
shortcomings. It starts with the following ideas and assumptions.

1. the datasets used for various machine learning problems constitute low dimen-
sional manifolds embedded in higher dimensional spaces.

2. the classification problem entails segregation of disjoint non-linear manifolds
inside the dataset.

3. these classes in the input lie on manifolds that are not linear, and hence linear
methods cannot be used to segregate them.

4. deep learning networks transform the input non-linear manifold, through various
transformations it learns during training to a linear region. In various deep learning
architectures, these transformation are implemented through a combination of
linear or affine layers in conjunction with non-linear activations. We can consider
these combined transformations a change of basis over various highly curved
coordinate systems.

5. once the non-linearized input is converted to linear region through these cascaded
transforms, we can use simple linear projection technique of typeWx + b (where
W is the linear matrix of weights, x the input vector, and b the bias term) which
will effectively partition the spaces through hyperplanes.

58 P. Kaul and B. Lall

6. since the transforms are over curved basis, we can use the tools from General
Theory of Relativity which uses the mathematics of Riemannian curvature exten-
sively.

7. we measure the curvature by calculating the gradient of the output compared to a
set of parameterized transform in input data. I.e. ∂o

∂t , here o is the output and t is
the transform parameter.

We attempt to perform a direct measurement of Riemannian curvature for a manifold
of transformations, which can have one or more dimensions. The transforms selected
depend on the type of data, and for images we can use transforms like translation
or rotation or a combination of these. As we move the input validation set over
the manifold of transformations, we need to measure the gradient of output using
difference equations. The steps for these measurements are shown in Fig. 22. The
various steps in the are described previously in Sect. 3.2.

One Dimensional Manifold Classifier. We test the above algorithm on a synthetic
dataset and perform the calculations with transformations consisting of a single
dimensional manifold. We feed this single dimensional manifold of transformed
inputs to a pre-trainedMLP trained to discriminate between two archimedian spirals.
We use two archimedean spirals separated by π radians, since those are not linearly
separable. The spiral are as given below:

xi (θ) = t cos(θ + di) + n(θ), (69)

yi (θ) = t sin(θ + di) + n(θ), (70)

where the two equations generate the two rectangular coordinates for all values of
angle θ between 0 to 2π, while t is a constant. The variable di is the initial angle
of the spiral which is selected to be 0 for first spiral and or π for the second spiral.
In the training set, we also add i.i.d Gaussian noise to the co-ordinates generated in
form of n(θ).

For generating the dataset for the neural network, we need to create a set of vectors
from the coordinates generated above. For this we utilize two Gaussian random
vectors with unity variance, u0 and u1, each of length 1000, which we multiply
with the previously generated coordinates to create the input dataset for the neural
network.

v = xi (θ)u0 + yi (θ)u1. (71)

For creating the training set, we generate random θ for each training sample to
be generated, and calculate v using this θ as show in the equation (71) above. This
v is the input training vector for training the neural network. A particular instance
of training set is represented in Fig. 23, where red dots correspond to the first class
and blue dots to the second class. For the validation dataset (which will be used to
measure curvature), we do not generate x and y through the spiral equations, but

Theoretical Characterization of Deep Neural Networks 59

Training
Train the network with SGD over standard dataset

Evaluation
Create test dataset with specific transforms and evaluate
the trained network over it, saving softmax values z[i, j]

Calculate gradient of softmax value
p = ∂z(i,j)

∂s
= zs,t(i, j) = (ẑ[i, j] − ẑ[i − 1, j])/Δs

q = ∂z(i,j)
∂t

= zt,s(i, j) = (ẑ[i, j] − ẑ[i, j − 1])/Δt

Calculate the Metric using dot product of gradients
g(p, q) = p̃(q) = p · q

Calculate Christoffel Symbols
Γ γ

βμ = 1/2 ∗ gαμ(gαβ,μ + gαμ,β − gβμ,α)

Calculate Riemann Curvature from derivative of Christoffel Symobl
Rα

βμν = Γ α
βν,μ − Γ α

βμ,ν + Γ α
σμΓ α

σν − Γ α
σνΓ α

βν

Calculate Ricci Tensor
Rαβ = Rμ

σμβ .

Contract Ricci tensor to obtain the Ricci scaler.
R = gμνRμν = gμνgαβRαμβν

Fig. 22 Steps in calculating Ricci scaler curvature

instead generate entire gird of possible xi and yi . We then utilize Eq.71 to generate
the validation vectors.

Once the datasets is created and network is trained, we test the network against the
validation set and store the output softmax values. This softmax output is used to find
various gradients and curvature metrics as shown in Fig. 22. We firstly note that the
two classes are on single dimensional manifold (of parameter θ), but are not linearly
separable. From the plotted classifier regions as shown in Fig. 24, it can be inferred
that the network correctly discriminates between the two classes. The only exception
is at the center, where we have some overlap. We plot the Ricci scaler values for the
entire validation set as shown in Fig. 25. We note that the networks learns very large
curvature values for the boundary regions separating the two classes. We infer that

60 P. Kaul and B. Lall

Fig. 23 Training set with red for class 0, and blue for class 1

Fig. 24 Classifier regions for trained neural net

Theoretical Characterization of Deep Neural Networks 61

Fig. 25 Ricci scaler for spiral data

the neural network is increasing the distance between classes at boundary regions to
be able to discriminate between the classes.

We can utilize the above observation to note that any boundary regions with small
curvature may be possible areas where small deformations/transformations in input
data may lead to classification errors. Another interesting observation is that the
neural networks learns to classify in certain predictable ways even in the regions
where we haven’t supplied any training data.

References

1. Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J.,
Catanzaro, B., Cheng, Q., Chen, G., et al. Deep speech 2: end-to-end speech recognition in
English and mandarin. In: International Conference onMachine Learning, pp. 173–182 (2016)

2. Andén, J., Mallat, S.: Deep scattering spectrum. IEEE Trans. Signal Process. 62(16), 4114–
4128 (2014)

3. Bartlett, P.L., Maass, W.: Vapnik-Chervonenkis dimension of neural nets. In: The Handbook
of Brain Theory and Neural Networks, pp. 1188–1192 (2003)

4. Bengio, Y., Delalleau, O.: On the expressive power of deep architectures. In: International
Conference on Algorithmic Learning Theory, pp. 18–36. Springer, Berlin (2011)

5. Bianchini, M., Scarselli, F.: On the complexity of shallow and deep neural network classifiers.
In: ESANN (2014)

6. Bredon, G.E.: Topology and Geometry, vol. 139. Springer Science & Business Media (2013)
7. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning:

going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)
8. Bruna, J.: Geometric stability in Euclidean domains: the scattering transform and beyond.

https://joanbruna.github.io/MathsDL-spring18/ (2018)
9. Bruna, J., Mallat, S.: Invariant scattering convolution networks. IEEE Trans. Pattern Anal.

Mach. Intell. 35(8), 1872–1886 (2013)

https://joanbruna.github.io/MathsDL-spring18/

62 P. Kaul and B. Lall

10. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Ben-
gio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine
translation (2014). arXiv preprint arXiv:1406.1078

11. Choquet-Bruhat, Cécile, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds, and
Physics. Gulf Professional Publishing (1982)

12. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley (2012)
13. Friedman, J., Hastie, T. andTibshirani, R.: TheElements of Statistical Learning, vol. 1. Springer

Series in Statistics. Springer, New York (2001)
14. Gilmore, R.: Lie Groups, Lie Algebras, and Some of Their Applications. Courier Corporation

(2012)
15. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323
(2011)

16. Goodfellow, I., Bengio, Y. and Courville, A.: Deep Learning. MIT Press (2016)
17. Guss, W.H., Salakhutdinov, R.: On characterizing the capacity of neural networks using alge-

braic topology (2018). arXiv preprint arXiv:1802.04443
18. He,K., Zhang,X., Ren, S., Sun, J.: Deep residual learning for image recognition. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
19. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780

(1997)
20. Kaul, P., Lall, B.: Riemannian curvature of deep neural networks. IEEE Trans. Neural Netw.

Learn. Syst. (2019). https://doi.org/10.1109/TNNLS.2019.2919705
21. Kearns, M.J., Vazirani, U.V., Vazirani, U.: An Introduction to Computational Learning Theory.

MIT Press (1994)
22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

23. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
24. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proc. IEEE 86(11), 2278–2324 (1998)
25. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010)
26. Lee, J.M.: RiemannianManifolds: An Introduction to Curvature, vol. 176. Springer, New York

(1997)
27. Lee, J.M.: Introduction to Smooth Manifolds, vol. 218. Springer, New York (2013)
28. Mallat, S.: Group invariant scattering. Commun. Pure Appl. Math. 65(10), 1331–1398 (2012)
29. Mallat, S.: Understanding deep convolutional networks. Phil. Trans. R. Soc. A 374(2065),

20150203 (2016)
30. Mathworks. im2col. https://in.mathworks.com/help/images/ref/im2col.html. Accessed 10 Feb

2019
31. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geometric deep

learning on graphs and manifolds using mixture model CNNs. In: Proceedings of CVPR, vol.
1, p. 3 (2017)

32. Munkres, J.R.: Topology. Prentice Hall (2000)
33. Nakahara, M.: Geometry, Topology and Physics. CRC Press (2003)
34. Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in

deep neural networks through transient chaos. In: Advances in Neural Information Processing
Systems, pp. 3360–3368 (2016)

35. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Sohl-Dickstein, J.: Survey of expressivity in
deep neural networks (2016). arXiv preprint arXiv:1611.08083

36. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with
region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99
(2015)

37. Saxe,A.M.,McClelland, J.L., Ganguli, S.:Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks (2013). arXiv preprint arXiv:1312.6120

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1802.04443
https://doi.org/10.1109/TNNLS.2019.2919705
https://in.mathworks.com/help/images/ref/im2col.html
http://arxiv.org/abs/1611.08083
http://arxiv.org/abs/1312.6120

Theoretical Characterization of Deep Neural Networks 63

38. Schutz, B.: A First Course in General Relativity. Cambridge University Press (2009)
39. Sermanet, P., LeCun, Y.: Traffic sign recognition with multi-scale convolutional networks. In:

Neural Networks (IJCNN), pp. 2809–2813. IEEE (2011)
40. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of

signal processing on graphs: extending high-dimensional data analysis to networks and other
irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

41. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–9 (2015)

42. Topaz, C., Ziegelmeier, L., Halverson, T.: Topological data analysis of biological aggregation
models. PloS one. 10. https://doi.org/10.1371/journal.pone.0126383

43. Vapnik,V.N., Chervonenkis, A.Y.:On the uniform convergence of relative frequencies of events
to their probabilities. In: Measures of Complexity, pp. 11–30. Springer, Cham (2015)

44. Wiatowski, T., Bölcskei, H.: A mathematical theory of deep convolutional neural networks for
feature extraction (2015). arXiv preprint arXiv:1512.06293

45. Zomorodian,A., Carlsson,G.: Computing persistent homology.Discret. Comput. Geom. 33(2),
249–274 (2005)

https://doi.org/10.1371/journal.pone.0126383
http://arxiv.org/abs/1512.06293

Scaling Analysis of Specialized Tensor
Processing Architectures for Deep
Learning Models

Yuri Gordienko, Yuriy Kochura, Vlad Taran, Nikita Gordienko,
Alexandr Rokovyi, Oleg Alienin and Sergii Stirenko

Abstract Specialized tensor processing architectures (TPA) targeted for neural net-
work processing has attracted a lot of attention in recent years. The computing com-
plexity of the algorithmically different components of some deep neural networks
(DNNs) was considered with regard to their further use on such TPAs. To demon-
strate the crucial difference between TPU and GPU computing architectures, the
real computing complexity of various algorithmically different DNNs was estimated
by the proposed scaling analysis of time and speedup dependencies of training and
inference times as functions of batch and image sizes. The main accent was made
on the widely used and algorithmically different DNNs like VGG16, ResNet50,
and CapsNet on the cloud-based implementation of TPA (actually Google Cloud
TPUv2). The results of performance study were demonstrated by the proposed scal-
ing method for estimation of efficient usage of these DNNs on this infrastructure.
The most important and intriguing results are the scale invariant behaviors of time
and speedup dependencies which allow us to use the scaling method to predict the

Y. Gordienko (B) · Y. Kochura · V. Taran · N. Gordienko · A. Rokovyi · O. Alienin · S. Stirenko
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv,
Ukraine
e-mail: yuri.gordienko@gmail.com

Y. Kochura
e-mail: iuriy.kochura@gmail.com

V. Taran
e-mail: vladtkv@gmail.com

N. Gordienko
e-mail: nik.gordiienko@gmail.com

A. Rokovyi
e-mail: alexandr.rokovoy@gmail.com

O. Alienin
e-mail: oleg.alenin@gmail.com

S. Stirenko
e-mail: sergii.stirenko@gmail.com

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_3

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_3&domain=pdf
mailto:yuri.gordienko@gmail.com
mailto:iuriy.kochura@gmail.com
mailto:vladtkv@gmail.com
mailto:nik.gordiienko@gmail.com
mailto:alexandr.rokovoy@gmail.com
mailto:oleg.alenin@gmail.com
mailto:sergii.stirenko@gmail.com
https://doi.org/10.1007/978-3-030-31756-0_3

66 Y. Gordienko et al.

running training and inference times on the new specific TPAswithout detailed infor-
mation about their internals even. The scaling dependencies and scaling powers are
different for algorithmically different DNNs (VGG16, ResNet50, CapsNet) and for
architecturally different computing hardwares (GPU and TPU). These results give
the precise estimation of the higher performance (throughput) of TPAs as Google
TPUv2 in comparison to GPU for the large number of computations under condi-
tions of low overhead calculations and high utilization of TPU units by means of the
large image and batch sizes. In general, the usage of TPAs like Google TPUv2 is
quantitatively proved to be promising tool for increasing performance of inference
and training stages even, especially in the view of availability of the similar specific
TPAs like TCU in Tesla V100 and Titan V provided by NVIDIA, and others.

Keywords Deep learning · Tensor processing architecture · Tensor processing
unit · Tensor cores · Scaling · GPU · TPUv2 · Training time · Inference time ·
Speedup · MNIST · VGG16 · ResNet50 · CapsNet

1 Introduction

The current success of machine learning (ML), especially deep learning (DL) and
deep neural networks (DNNs), is tightly coupled with the recent progress of high-
performance computing (HPC) and specialized computing architectures. It allows
using their intrinsic concurrency and specific abilities for better efficiency [1–4].
Along with a growth of the ML/DL problem complexity, size of datasets and DNNs,
amount of features, classes and categories of processed objects increases. There-
fore, the demands for the higher accuracy, quicker learning and inference is also
tightly related to the demands for higher computing power, larger memory, wider
network bandwidth, etc. For these purposes various computing infrastructures are
used now: from desktop machine (with shared memory model) to parallel hardware
architectures like high-performance computing cluster (with shared and distributed
memory models) and up to cloud-based systems (distributed memory model), which
are especially popular and widely used now.

The progress of these infrastructures follows the current trend of hardware acceler-
ation for DL applications. During the last decade it was deeply connected with devel-
opment of graphics processing units (GPU) as general purpose processors (GPGPU).
However recently thewide variety of alternative old and new platforms appears: from
the well-known digital signal processors (DSP) and field programmable gate-arrays
(FPGA) [5, 6] to the quite new application-specific integrated circuit (ASIC) archi-
tectures [7] including neuromorphic hardware [8, 9], tensor-processing architectures
(TPA) like TCs (Tensor Cores) by NVIDIA [10] and TPUs (tensor processing units)
by Google [11] targeted for specialized tensor processing tasks that are heavily used
in machine learning applications.

For efficient usage of the modern complex DNNs on these computing infrastruc-
tures various aspects of both of them should be taken into account. They are especially

Scaling Analysis of Specialized Tensor Processing Architectures … 67

important for the new computing architectures on the ML/DL cloud-based systems
(like Clarifai, Google Cloud Vision, Rekognition, Polly, and Lex Amazon, Microsoft
Azure Cognitive Services, IBMWatson, etc.) that become extremely popular in sci-
entific community and commercial applications. The main problem of cloud-based
solutions in comparison to localized solutions is the proper estimation of the training
and inference times that is essential for commercial applications.

In this work, we shortly discuss some specialized TPA, emphasize their cloud-
based implementations and demonstrate the results of performance study for some
popular DNNs on such infrastructure, and propose the scaling method for estimation
of efficient usage of these DNNs on this infrastructure.

The main aim of this paper is to investigate scaling of training and inference
performance for the available GPUs and TPUs with an increase of batch size and
image size that allows making predictions of running times and estimate the hidden
overheads in proprietary TPA solutions even.

The remainder of this chapter is organized as follows. In Sect. 2 we give the brief
outline of the state of the art in tensor processing and TPAs used. Section 3 contains
the description of the experimental part related with the selected hardware, dataset,
models, and metrics used. Section 4 reports about the experimental results obtained,
Sect. 5 is dedicated to discussion of these results, and Sect. 6 summarizes the lessons
learned.

2 Background and Related Work

In contrast to the traditional HPC tasks the current ML/DL tasks are mostly resolved
by means of the specific accelerated systems like GPU and FPGA despite their usage
for HPC before. The essence of these specialized architectures is in their intrinsic
abilities to use the high data parallelism efficiently. Therefore their usage becomes
de facto standard in ML/DL applications nowadays. Despite the evident progress,
even single-machine nodes accelerated by GPU cards cannot satisfy the quickly
growing computing demands from ML/DL problems. As a response to these new
requirements for higher computing power the following mainstream trends appear:
multi-node architectures (in cluster and cloud systems), specialized TPAs, and their
combinations [12].

The additional demand for the new specialized computing architectures is related
with the usage ofML/DL application on variousmobile devices from consumer types
(like smartphones, tablets, wearable electronics, etc.) to industrial ones (like security
systems, health monitoring, autonomous driving, etc.). This demand is tightly related
with the strict requirements to the lower memory usage, the number of computing
operations, and related energy waste [13–15]. To resolve these hardships specialized
TPAs like TC [10] and TPU [11] appear and are widely used now in consumer and
industrial implementations.

68 Y. Gordienko et al.

Recent trends in acceleration of DNNs for mobile devices with TPA can be
classified into some categories: optimized implementation, quantization, and struc-
tured simplification that convert a DNN into a compact one [16, 17]. For example,
structured simplification envelopes several approaches like tensor factorization [17],
sparse connection [18], and channel pruning [19].

The extensive reviews on efficient processing of DNNs usually related with var-
ious general perspectives, models, optimization algorithms, and datasets. Others
consider computation techniques for DNN components with regard to inherent par-
allelismof the targeted hardware using some techniques to reduce the overallmemory
used on the targeted hardware [19].

In this context, the strategic vision of parallelism applied for DNNs is of great
importance for evaluation, implementation, and extension of algorithms and sys-
tems targeted at supporting distributed environments. Recently, some comparative
measures on the approaches were discussed. Their concurrency and the average par-
allelism using the work-depth model were analyzed [12].

2.1 Tensor Cores

Tensor Cores (TCs) are hardware matrix math accelerators proposed in Volta archi-
tecture by NVIDIA. Tensor Cores provide a 4× 4× 4matrix processing array which
performs the operation D = A * B + C, where A, B, C and D are 4 × 4 matrices.
TCs in combination with TensorRT library by NVIDIA allow us to perform several
transforming and optimizing operations to DNN graph to improve performance. For
example, they include elimination of layers with unused output to avoid unnecessary
computation, fusion of some separate layers (convolution, bias, and activation) into
a single layer, horizontal layer fusion by combining the functionally similar layers
(with the same source tensor and the same operations with similar parameters), etc.

TC and TensorRT allow for using low-bit optimizations. For example, half-
precision (also called FP16) arithmetic reduces memory footprint of DNNs and
read-write overheads in comparison to FP32 or FP64 arithmetic. It enables deploy-
ment of larger DNNs and does it faster than FP32 or FP64 arithmetic. It is explained
by the more efficient matrix operations on TCs, where the operation D = A * B + C
can be implemented by the inputs A and B which are FP16 matrices, while the accu-
mulation matrices C and D may be FP16 or FP32 matrices. In addition, TensorRT
automatically uses TCs for inference with FP16 arithmetic. As a result, TensorRT +
TCs on Volta architecture V100 GPU card (with FP16 arithmetic) can significantly
speed up inference time. For example, inference for ResNet-50 DNNmodel on GPU
V100 + TensorRT + TCs (FP16) is ~4 × faster than inference with single precision
(FP32) and ~8 × faster than inference with double precision (FP64) on the same
card without TensorRT + TCs [20].

But it should be noted that these results were reported for the quite different batch
sizes: 2 for V100 (FP32) and 16 for V100 + TensorRT + TCs (FP16), while our

Scaling Analysis of Specialized Tensor Processing Architectures … 69

previous benchmark results demonstrated the huge influence of the batch size on the
performance of some DNNs on GPU and TPU architectures [21].

Moreover, Turing architecture for TCs not only provide FP16/FP32 arithmetic like
Volta architecture for Tensor Cores; they also add new INT8 and INT4 arithmetic.
Usage of the lower bit representation on Tesla T4 GPU card with Turing architecture
for TCs provides ~2.5 × faster inference in comparison to GPU V100 + TensorRT
+ TCs (FP16) for the same batch size 128 [22].

2.2 Tensor Processing Units

Recently Tensor Processing Units (TPUs) by Google attracted significant attention
as another one TPA for increasing the efficiency and speed of DNNs. TPU contains
256 × 256 = total 65,536 arithmetic logic units (ALUs) that can process 65,536
multiply-and-add operations for 8-bit integers every cycle. As far as the TPU runs at
700MHz, it can compute 65,536× 7×108= 46× 1012multiply-and-add operations
or 92 × 1012 per second [11]. According to the announced benchmarks, TPU can
process DNNs up to 30 × faster and can be up to 80 × more energetically efficient
than CPUs or GPUs [11]. It is possible, because the TPU is specifically adapted
to process DNNs with more instructions per cycle than CPU and GPU. Despite
availability of some performance tests and extensive reviews of the available TPAs,
like Google TPU versus NVIDIA GPU K80 [11] and Google Cloud TPUv2 versus
GPU NVIDIA V100 [23], the systematic studies on their performance with regard
to scaling (different dataset sizes, different batch sizes, etc.) are absent except for the
several previous attempts [21].

Moreover TPU is the unique TPA because of its current availability as a cloud
service resource only in the following configurations: Cloud TPU v2 (180 teraflops,
64 GB High Bandwidth Memory (HBM)), Cloud TPU v3 (420 teraflops, 128 GB
HBM), Cloud TPU v2 Pod Alpha (11.5 petaflops, 4 TB HBM, 2-D toroidal mesh
network) (https://cloud.google.com/tpu/) [11].

2.3 Other DNNs Accelerators

Despite the extremely high interest from various manufacturers to the new TPAs tar-
geted for acceleration of DNNs, they are mostly proprietary solutions without details
on their implementation, with scarce documentation and available application pro-
gramming interfaces. Nevertheless, they become integral parts of computing devices
as DNN accelerating co-processors, system on chips, or ASICs for specific applica-
tions (like computer vision or DSP) and the detailed reviews with benchmarks can
be found elsewhere [24–28].

https://cloud.google.com/tpu/

70 Y. Gordienko et al.

2.4 Parallel Algorithms and Tensor Processing Architectures

One of the ways to achieve the highest performance in GPU computing is to hide
the long latency and other computational overheads by high data-level parallelism
to achieve a high throughput, for example by the high batch size values [29, 30].
Usually, batch sampling is implemented by shuffling the whole dataset, and an entire
pass over the dataset is called an epoch. As far as a full training procedure usually
consists of tens to hundreds of such epochs, batch sampling with the largest possible
batch can provide significant parallelization and throughput [31, 32].

Aiming on the highest accuracy the optimal batch size represent a tradeoff between
minimal batch size 1 (one sample at each iteration) for traditional gradient descent,
which is proven to converge, and the maximal batch (the whole dataset at each
iteration), when convergence is not always proven to exist [33].

However, the optimal batch size is a complex optimization problem, as far as it is
limited by requirements of accuracy and efficiency. But it is empirically known that
batch size should not be too small, nor should it be too large to provide convergence
and generalization [31, 34–36].

Most of the operations in learning can be modeled as operations on tensors
(typically tensors as a parallel programming model). Such operations are highly
data-parallel and only summations introduce dependencies. That is why quantitative
analysis of TPAs under real working conditions can bring to the light the details of
DNNs and TPAs themselves.

Following the commonly accepted paradigm a DNN can be represented by a
directed acyclic graph (DAG) where the vertices are the computations and the edges
are the data flows. The computational parallelism in such graph can be character-
ized by two main parameters: the volume of work W, which corresponds to the total
number of vertices, and the depth D, which is the number of vertices on any longest
path in the DAG. Usually these parameters can characterize the computational com-
plexity on a parallel system and obtain some previous estimation for running time.
For example, the running time on a single processor is ~W, on an infinite number of
processes is ~D, and the average parallelism ~W/D [12].

In addition to the tests on GPU [37–42], recently the thorough performance anal-
ysis of the Google TPU was performed with some attempts to estimate influence of
hyper-parameters on performance for TPU also [11, 43]. In addition, this work is
aimed to give the answer to some questions, namely, when it could be more efficient
to use GPU or TPU during training and inference phases for datasets of various sizes
and batch sizes. In the next section the short description of the used datasets, network,
equipment, and measurement methods is given.

This especially important in the view of the great interest to the influence of hyper-
parameters of deep neural networks (DNN)on their training runtime andperformance
[37, 38], especially with regard to the batch size, learning rate, activation functions,
etc. [39–42].

Nevertheless these benchmarks do not take into account the computing complexity
of the models and do not estimate training and inference with regard to the different

Scaling Analysis of Specialized Tensor Processing Architectures … 71

object sizes (for example, image sizes in classification problems), batch size, dataset
size, etc. For example, for the very big datasets, data supply cannot be provided
from in-memory only, and other ways should be used like data generators for read-
ing data from hard disk or network including pipelines and other techniques. From
the practical point of view these estimations are crucial for the actual training and
inference times for various configurations of production DNN applications. From
the fundamental point of view, as it will be shown below, the benchmarks on batch
and object size influence can bring to the light some specific features of TPAs and
DNNs used in them.

2.5 Parallel Algorithms and Computing Complexity in DNNs

Below the DNNs that are used for supervised learning will be considered, i.e. for
optimizing a DNN on a set of labeled samples (train data) in such a way that for
the given sample (test data) the DNN would return a label with some probability. It
is assumed that both the train and test data are different parts of the same dataset.
In this work, we consider one of the types of supervised learning problems, namely
classification task, where the goal is to identify which class a sample most likely
belongs to, for example the computer vision tasks. Among various DNNswe selected
several well-known representatives of convolutional neural networks (CNNs) with
slightly different structures. In CNNs the neurons are grouped to layers of several
kinds that are described below. In computer vision images are used as input and
represented as a 4-dimensional tensor N × C×H × W, where N is the batch size (the
number of images in the batch), H—is the height of the image (image size), W—is
the width of the image (image size), C is the number colors (color channels).

In the DNNs (actually CNNs) considered here, the number of characteristic fea-
tures (channels), as well as the width and height of an image, differ from layer to
layer due to application of various following operators (described below) [44, 45].

In a convolutional layer an 3D tensor-shape image x (i.e., a slice of the 4D batch
tensor which represents batch, i.e. the set of images) is convolved by the convolution
operators (kernels)Cout of sizeCin ×Kh×Kw, whereCin is the input of the layer,Cout

is the output of the layer, Kh—is the height and Kw is the width of of the convolution
kernel. In terms of computing complexity the work (the number of mathematical
operations) performed in this layer is equal to:

Wconv = O
(
NCoutCinHiWi Kx Ky

)
(1)

where index i forHi andWi means the number of layer because the height and width
of the image can be changed due to other operators like pooling.

The pooling operator reduces an input tensor by the width and height dimensions
(and subsequently the number of trainable parameters of themodel). The general aim
of pooling is to reduce the size of the model while emphasizing important features,
because subsequent pooling on all convolutional layers enables learning high-level

72 Y. Gordienko et al.

features that correspond to larger regions in the original data. From algorithmic
point of view this operator increase the local work at each convolution layer by
Wpool operations, but decrease the global work by decreasing Hi and Wi at each
convolution layer also, usually by exponential law. It performs some operation on
contiguous sub-regions of the reduced dimensions, such as calculation of maximum
or average value with the following computing complexity:

Wpool = O(NCinHiWi) (2)

The batch normalization operator makes normalization of images in the same
batch with a zero mean and a variance of one that enables reducing the covariate
shift and improving convergence with the following computing complexity:

Wbn = O(NCinHiWi) (3)

It should be noted that numerous additional operators, such as striding, padding,
and dilating can be applied which can modify Hi and Wi and slightly influence the
work, but these peculiarities are out of this consideration.

The fully connected layer is implemented as a matrix-matrix multiplication and
addition with the following computing complexity:

Wfcn = O(Cout · Cin · N) (4)

Usually DNN is represented as some function composition, where some of afore-
mentioned operators applied to results of the previous operator (direct composition),
or some operators might reuse the results of the previous operator with the out-
put values of the more distant layer in multiple subsequent layers, forming shortcut
connections like in residual networks like ResNet [46] or dense networks [47].

The whole number of computations in DNN includes computations from many
layers with complex relationships and data workflows, especially taking into account
the complex computations for the forward evaluation and backpropagation at differ-
ent layer types. Sometimes the work performed in each layer can asymptotically
dominate and allow for rough estimation of its computing costs. As far as DNN
layers deal with 4-dimensional tensors and many operations localized inside them,
they can be implemented for parallel execution at layer level. In this context, the
runtime of a single DNN operator is hard to estimate even, despite some attempts to
measure the performance of the highly-tuned matrix multiplication implementations
[48]. In other works the runtime of some DNNs was estimated for batches of various
sizes with ~5–20% error for GPUs [48] and CPUs [49, 50] in distributed environ-
ments even. Some performance models for DNNs were also proposed for operation
counts with 10–30% error [51], and to estimate communication requirements for the
convolution and pooling operators [52].

However, in general, the computing cost for the whole DNN is hard to estimate
due to intrinsic complexity of most DNNs, especially taking into account different
hardware architectures with the different available parallelism like TPAs. But from

Scaling Analysis of Specialized Tensor Processing Architectures … 73

practical point of view it is especially important to use the intrinsic data parallelism
in TPAs by increasing batch size and predicting the impact of batch size on the
training and inference time. The fact is that most of the layer operators in DNNs are
independent with respect to the number of samples (for example, images for CNNs)
in the batch and direct parallelizationway is to partition thework of the batch samples
among multiple computational resources (for example, GPU cores and devices, or
TPU cores, chips, pods, devices, and hosts).

Several attempts were made to check the reliability and feasibility of the general
intuition that a bigger batch size will lead to better performance without losing
considerable accuracy [31, 35, 36, 53, 54].

In this work the results on estimation of training and inference time for several
DNNs are proposed on the basis of scaling approach that allow to use scaling method
not only for runtime prediction for various batch and object size, but also for analysis
of the hidden overheads for some new computing architectures, especially based
on proprietary solutions with a limited notion about their internal organization on
example of Google Cloud TPU.

3 Experimental and Computational Details

3.1 Datasets, Equipment, Metrics, and Models

Datasets: The MNIST database (Modified National Institute of Standards and Tech-
nology database) is a large database of handwritten digits (28 × 28 images) that
become a standard benchmark for learning, classification and computer vision sys-
tems [55]. It was derived from a larger dataset known as the NIST Special Database
19 which contains digits, uppercase and lowercase handwritten letters. The subsets
of these datasets were used with the maximally possible batch size (for the better
runtime) starting from 8 images and up to 60,000 images.

Equipment: GPU and TPU. The GPU and TPU computing resources were used to
investigate the influence of hardware-supported quantization on performance of the
DNNs. NVIDIA Tesla K80 was used as GPU cards during these experiments as
Google Collaborative cloud resources (https://colab.research.google.com). Google
TPUv2 are arranged into 4-chipmodules with a performance of 180 TFLOPS, and 64
of these modules are then assembled into 256 chip pods with 11.5 PFLOPS of overall
performance. TPU 2.0 has an instruction set optimized for executing Tensorflow and
capable of both training and running DNNs. A cloud TPUv2 version was used as
a TPU-hardware during these experiments, where 8 TPU cores were available as
Google Collaborative cloud resources also.

Deep Neural Networks: The following DNNs were used for this stage of research:
VGG16 [56], ResNet50 [46], CapsNet (shown in Fig. 1) [57]. The idea behind them
was to use the well-known DNNs, but use them for the standard MNIST dataset of
moderate size and complexity to get results for reasonable period.

https://colab.research.google.com

74 Y. Gordienko et al.

Fig. 1 The structure of the CapsNet deep neural network used in the work

VGG16 consists of 16 convolutional layers and has very uniform architecturewith
only 3 × 3 convolutions for all filters. It is widely described and used in the ML/DL
community and currently is the most preferred choice for extracting features from
images. The weight configuration of the VGG16 is publicly available and has been
used in many other applications and challenges as a baseline feature extractor [56].

ResNet50 have the bigger depth and address the depth issue by training a slightly
different inter-layer interaction. Instead of composing layers as in VGG16, it uses
residuals implemented as “shortcut” identity connections to the network. The system
then trains layers with respect to their residuals instead of their original values, and
this solves the inherent degradation in accuracy as networks become deeper. With
ResNet50 it became possible to train deeper networks with depths up to 152 layers
and with further increase of the quality.

Recently the capsule network was proposed that is a nested set of neural layers
that is different from the usual CNN. In the regular CNN more layers added in a
stack, but in CapsNet more layers are added inside a single layer (or nested). The
neurons inside a capsule encapsulate the above properties of one entity inside an
image. Moreover, a capsule outputs a vector to represent the existence of the entity
and the vector orientation represents the properties of the entity. The vector is sent to
all possible parents in the neural network, and for each possible parent a capsule can
find a prediction vector. Prediction vector is calculated based on the multiplication
of it’s own weight and a weight matrix. Whichever parent has the largest scalar
prediction vector product, increases the capsule bond. Rest of the parents decrease

Scaling Analysis of Specialized Tensor Processing Architectures … 75

their bond. This routing by agreement method is superior to the current mechanism
likemax-pooling, becausemax pooling routes based on the strongest feature detected
in the lower layer.

Metrics. Accuracy and loss values are calculated for training, validation, and infer-
ence phases, then receiver operating characteristic (ROC) curves are constructed and
the area under curve (AUC) is calculated per class as their micro and macro aver-
ages. To emphasize the contribution of initialization phase for GPU and TPU, the
following runtimes (both for GPU and TPU) per image were calculated for each run:

• time with overheads = the wall time of the 1st iteration/number of images;
• time with overheads = the wall time of the 2nd iteration/number of images;
• time without overheads = the wall time of the 2nd iteration/number of images.

The speedup values were calculated as GPU runtimes divided by TPU runtimes.
During all trials the following actions were performed. Accuracy and loss values

were calculated for training, validation, and inference phases (Fig. 2), then receiver
operating characteristic (ROC) curves were constructed and the area under curve
(AUC) were calculated per class as their micro and macro averages (Fig. 3). Below
some examples of the training and validation histories are shown for GPU K-80
for MNIST dataset (Fig. 2) and the similar plots were obtained for TPUv2 MNIST
(they are principally the same ones and not shown here because of the absence of
difference).

The ROC-curves and AUC-values (Fig. 3) demonstrate the excellent prediction
accuracy for 10 epochs even, which were used for comparison with the similar
experiments on TPUv2.

Then training and testing (inference) times were calculated for different batch and
image sizes and plotted as it is shown, for example, in Fig. 4 for GPU K80 and Fig. 5
for TPUv2. These results demonstrate the principally different scaling behavior of
the training and testing (inference) times for these two different architectures.

The drastic difference of the 1st and 2nd iterations in comparison to the 3rd
iterationmeans the availability of the starting data preparation andmodel compilation
procedures (starting overheads stated as “overheads” below). They take place during

Fig. 2 Accuracy (left) and loss (right) during training and validation on GPU K80 for VGG16 (for
the whole training part of MNIST dataset 60,000 images)

76 Y. Gordienko et al.

Fig. 3 ROC-curves and AUC-values for 10 classes on Google Cloud TPUv2 for ResNet50 (for the
testing part of MNIST dataset—10000 images)

Fig. 4 Training (left) and testing (inference) (right) times versus batch size on GPU K80 (for the
whole training part of MNIST dataset 60000 images)

Fig. 5 Training (left) and testing (inference) (right) times versus batch size on Google TPUv2 (for
the whole training part of MNIST dataset 60000 images)

Scaling Analysis of Specialized Tensor Processing Architectures … 77

the 1st iteration on GPU hardware, but during the 1st and 2nd iterations on TPU
hardware and these overheads are much longer for TPU hardware. That is why
the next scaling analysis was applied to these “overheads” and following iterations
separately.

Then speedup values were also calculated and plotted as functions of the batch
and image size.

The next section Results will focus on the training and inference times and
speedups as functions of the batch and image size, because accuracy/loss histo-
ries, ROC-curves and AUC-values for all used DNNs on GPU-k80 and TPUv2 were
the same in the limits of errors.

3.2 Computing Complexity of DNNs

The DNNs used in this work demonstrate the different increase of the computing
complexity with increase of the input data size (side length of the input image). The
effect is explained by the different algorithms implemented in them. The number of
trainable parameters (w) and the correspondent theoretical numbers of floating point
operations (FLOPs) (N) can be calculated manually or by means of the profiling
functions provided in Tensorflow framework [58].

For example, the number of trainable parameters grows by different laws for
VGG16: w ∼ s1/2 for a model with pooling layers and w ∼ s2 for a model without
pooling layers (Fig. 6a). The correspondent theoretical number of floating point
operations follow the same dependence: N ∼ s1/2 for VGG16 with pooling layers
and N ∼ s2 for VGG16 without pooling layers (Fig. 6b).

As to ResNet50 the number of parameters was not changed in the used imple-
mentation and the correspondent number of floating point operations was constant
(Fig. 7a). In contrast in CapsNet the number of trainable parameters grows asw ∼ s2

with the similar growth of the correspondent number of floating point operations (that

Fig. 6 The dependence of the number of parameters and floating point operations in VGG16 deep
neural network as a function of the square image size (length)

78 Y. Gordienko et al.

Fig. 7 The dependence of the number of parameters and floating point operations in VGG16 deep
neural network as a function of the square image size (H = W)

is similar to VGG16 model without pooling layers when the most portion of calcu-
lations is performed in convolutional layers) (Fig. 7b).

As far as the real training and testing includes numerous supporting operations
(like data processing, formatting, and so on) the related calculation overheads appear.
These overheads can crucially change estimations of the wall times based on the
numbers of floating point operations, because sometimes they are related with the
organization of data manipulation, which can be different in various hardware like
GPU and TPU. Moreover, they can be obscured from users, especially in cloud
implementations (like in TPUv2 provided in Google Cloud).

But a comparisonof the theoretical predictionswith the realwall times as functions
of input data size and batch size could provide real estimations and give some insights
as to the principles of work of some hardware. That is why the further research
was related to running numerous training and testing trials on MNIST dataset for
already mentioned DNNs like VGG16, ResNet50, and CapsNet on GPU and TPU
architectures. The main aim was to made comparative analysis of GPU and TPU on
the basis of the time dependence and speedup versus different input data sizes and
batch sizes. For this purpose the scaling analysis was used that is described in the
next section.

3.3 Scaling Analysis

To demonstrate themain difference between these computing architectures (TPU and
GPU) the real computing complexity for various algorithmically different DNNswas
estimated by the scaling analysis. The scaling technique is widely used in various
fields of science [59, 60], including finance [61], computer science and networks
[62], biology [63], physics [64], materials science [65], geology [66], aggregation
processes [67, 68], etc.

The idea behind the scaling technique is the assumption that the scale invariant
behavior of some functions characterizes the process with regard to the change of

Scaling Analysis of Specialized Tensor Processing Architectures … 79

Table 1 The powers in scaling laws for the numbers of trainable parameters (α) and the theoretical
numbers of floating point operations (β) for various DNN models

Model α (parameters) β (FLOPs)

VGG16 0.50 ± 0.05 0.50 ± 0.05

VGG16 (no MaxPool) 1.99 ± 0.01 1.99 ± 0.01

ResNet50 0.00 ± 0.00 0.00 ± 0.00

CapsNet 2.07 ± 0.02 2.11 ± 0.02

the other characteristics. It is assumed the proper re-normalization (scaling) of the
functions allow us to find the general similarity for the functions characterizing the
process under different values of scaling parameter.

Assuming that we have some function f (x, . . .) and change of its argument x by
the scale factor k changes it by kα times means

f (kx, . . .) = kα f (x, . . .) (5)

that is typical for homogeneous functions. By such changes of several parameters
for different systems (for example, different unknown hardware architectures) one
can find the arguments for which this function can be scaled with insights as to the
reasons for this scaling.

Returning to the previous section the numbers of trainable parameters for all
networks demonstrate the similar following scaling laws:

w = f (s, . . .) = sα fsc (6)

and

N = g(s, . . .) = sβgsc, (7)

where α and β are given in Table 1, fsc and gsc are scaled versions of f and g
functions.

4 Results

4.1 Vgg16

To characterize the running time, the following notation will be used (for VGG16
here and all other DNNs below):

tregime = fregime(s, b, i t), (8)

80 Y. Gordienko et al.

where
tregime—the wall running time in one of two regimes: training (regime = train)

and testing or inference (regime = inf) regime;
Dd—the running trials, where D is one of two devices: GPU K-80 (D = G) and

TPUv2 (D = T), and d is the number of running iteration: 1 for 1st, 2 for 2nd, 3 for
d > 2;

s—the image size (the side length of square images H = W from MNIST dataset
scaled from 28 × 28 to 96 × 96 pixels);

b—the mini-batch (batch) size from 8 to maximum possible number of images in
a batch.

For example, tinf = finf(s, b,T1) means the inference time as a function image
size s and batch size b for the 1st iteration on TPUv2 device.

The top images (Fig. 8a, b) represent the first and second iterations for GPU-
K80 (G1 and G2) and TPU (T1 and T2) where significant overheads were observed,
and the bottom images (Fig. 8c, d) represent the third iteration with much lower
overheads.

Training Testing

(a) ttrain(s, Dd) for Dd ∈ [G1, G2, T1, T2] (b) tinf(s, Dd) for Dd ∈ [G1, G2, T1, T2]

(c) ttrain(s, Dd) for Dd ∈ [G3, T3] (d) tinf(s, Dd) for Dd ∈ [G3, T3]

Fig. 8 Time (per image) versus image size for training (left) and testing (inference) (right) regimes
for VGG16. Each curve corresponds to the batch size and iteration denoted in the legend

Scaling Analysis of Specialized Tensor Processing Architectures … 81

The following steady and different behavior can be observed for both GPU and
TPU architectures:

• TPU causes the much bigger overheads (Fig. 8a, b) for both training and testing
(inference) regimes for the 1st (T1) and 2nd (T2) iterations in comparison to
the correspondent 1st (G1) and 2nd (G2) iterations at GPU. This difference is
especially high for the latency time at the 1st iteration.

• TPU demonstrates the much bigger overheads for the 1st iteration and 2nd iter-
ations in comparison to the later iterations (Fig. 8c, d) (which have the same
running times in the limits of the standard deviation), but GPU demonstrates the
much bigger overheads for 1st iteration only.

• TPU causes the huge overheads for both training and testing (inference) regimes
at the 1st (T1) and 2nd (T2) iterations in comparison to the 3rd (T3) iteration and
in comparison to all iterations at GPU.

• For the later than 2nd iterations (Fig. 8c, d) TPU demonstrates the much lower
running times in comparison to GPU.

• All time versus image size curves for each regime tregime = fregime(s, b, i t) are
visually similar and that is why hypothesis that they are homogeneous functions
is proposed and will be checked in the next section below.

Scaling for Time Dependencies
As far as the range of batch sizes was much bigger than the range of image sizes the
scaling analysis was performed on the basis of the running time versus batch size
curves. The running time versus batch size dependencies were plotted (Figs. 9a, b
and 10a, b) with the very pronounced visual similarity of the curves for each regime.

To make the scaling analysis the following scaling procedure was applied:

t scregime(si , b) = fregime(si , b, i t)

fregime
(
smin, b, i t

) =

= sα
i b

β f scregime(o(si), o(b), i t)

sα

minb
β f scregime

(
o
(
smin

)
, o(b), i t

) = sα
i F

sc
regime(si , b),

where Fsc
regime(si , b) = s−α

min
f scregime(o(si), o(b), i t)

f scregime

(
o
(
smin

)
, o(b), i t

) (9)

Under assumption of the low correlation between sα
i and Fsc

regime(si , b), i.e. if the

covariance between them Cov
(
sα
i , Fsc

regime(si , b)
)

= 0, after averaging each curve

t scregime(si , b) over b one can obtain:

〈
t scregime(si , b)

〉
b

= 〈
sα
i F

sc
regime(si , b)

〉=
=sα

i

〈
Fsc
regime(si , b)

〉
b
+ Cov

(
sα
i , Fsc

regime(si , b)
) ≈ sα

i Ci ,

where Ci = 〈
Fsc
regime(si , b)

〉
b

= const. (10)

82 Y. Gordienko et al.

Training Testing

(a) ttrain(b) vs. b (b) tinf (b) vs. b

(c) (),sc
train i b

t s b vs. si (d) ()inf ,sc
i b

t s b vs. si

(e) (),sc
train iF s b vs. b (f) ()inf ,sc

iF s b vs. b

Fig. 9 Time per image for training (left) and testing (right) regimes for the 1st and 2nd iterations
with big overheads, i.e. for Dd ∈ [G1, G2, T1, T2] for VGG16

Then the power α can be determined after log-log plotting of the averaged values〈
t scregime(si , b)

〉

b
as a function of si for each curve from Figs. 9a, b and 10a, b and

fitting the data by the direct line:

Scaling Analysis of Specialized Tensor Processing Architectures … 83

Training Testing

(a) ttrain(b) vs. b (b) tinf (b) vs. b

(c) vs. si (d) vs. si

(e) vs. b (f) vs. b

(),sc
train i b

t s b ()inf ,sc
i b

t s b

(),sc
train iF s b ()inf ,sc

iF s b

Fig. 10 Time per image for training (left) and testing (right) regimes for 3rd iteration (without
overheads) for VGG16

α =
log

(〈
t scregime(si , b)

〉

b

)
− log(Ci)

log(si)
(11)

The results of such fitting are shown for training regime on Figs. 9c and 10c, and
for testing regime on Figs. 9d and 10d. If the aforementioned assumptions are true,

then all points
〈
t scregime(si , b)

〉

b
as a function of si in log-log plot should align along the

84 Y. Gordienko et al.

direct line (Figs. 9c, d and 10c, d). Moreover, if the aforementioned assumptions are
true, then all points for the functions Fsc

regime(si , b) that are actually rescaled versions
of t scregime(si , b) by division of si in the power α determined by fitting should collapse
for each regime (Figs. 9e, f and 10e, f).

Fsc
regime(si , b) = t scregime(si , b)

sα
i

(12)

Finally, both these conditions are true, namely, points are aligned along straight
line (Figs. 9c, d and 10c, d) and the regime curves collapse (Figs. 9e, f and 10e, f), that
confirm the previous assumptions and support the idea about scaling dependence:

tregime(s) ∼ sαr

where αr is the power characteristic for the specific regime.

Scaling for Speedup Dependences
The same scaling procedure can be applied to the speedup dependence versus image
size and batch size for training and testing trials on TPU in comparison to the same
trials on GPU:

Sscr (si , b) = tGd,r (si , b)

tT d,r (si , b)
= sαGd,r

i bβGd,r f scGd,r

(
o
(
smin

)
, o(b), i t

)

sαTd,r

i bβTd,r f scT d,r (o(si), o(b), i t)
=

= sαGd,r−αTd,r

i bβGd,r−βTd,r
Fsc
Gd,r (si , b)

Fsc
Td,r (si , b)

= sαSd,r

i bβSd,r SscSd,r (si , b), (13)

where

αSd,r = αGd,r − αTd,r (14)

βSd,r = βGd,r − βTd,r (15)

SscSd,r (si , b) = Fsc
Gd,r (si , b)

Fsc
Td,r (si , b)

. (16)

The values of the power αDd,r for VGG16 are summarized in Table 2.

Table 2 The image size powers αDd,r in scaling laws for the running time for VGG16

Time αTd,r , TPU αGd,r , GPU

T1 T2 T3 G1 G2 G3

Testing −0.05 ± 0.02 0.02 ± 0.01 −0.87 ± 0.02 −1.00 ± 0.10 −1.19 ± 0.1 −1.11 ± 0.09

Training −0.03 ± 0.02 −0.64 ± 0.02 −0.62 ± 0.03 −0.14 ± 0.12 −1.14 ± 0.05 −1.14 ± 0.05

Scaling Analysis of Specialized Tensor Processing Architectures … 85

Table 3 The image size powers in scaling laws for the speedup: α
f
Sd,r—fitted from the plots on

speedup, and α
pr
Sd,r—predicted from the scaling laws on running time for VGG16

α
pr
Sd,r=αGd,r − αTd,r predicted from time

scaling

α
f
Sd,r fitted from speedup plots

S1 S2 S3 S1 S2 S3

Testing −0.95 ± 0.10 −1.21 ± 0.09 −0.24 ± 0.09 −0.91 ± 0.11 −1.15 ± 0.08 −0.40 ± 0.07

Training −0.11 ± 0.12 −0.50 ± 0.05 −0.52 ± 0.05 −0.29 ± 0.13 −0.70 ± 0.13 −0.78 ± 0.08

The values of the power αSd,r for VGG16 can be obtained by scaling analyses for
time and speedup and compared in Table 3.

The batch size powers (β) in scaling laws for the speedup can be calculated directly
from their plots (Figs. 11a and 12a, b), except for the testing regime with overheads
(Fig. 12b) (Tables 4).

4.2 ResNet50

The top images (Fig. 13a, b) represent the first and second iterations for GPU-K80
(G1 and G2) and TPU (T1 and T2) where significant overheads were observed,
and the bottom images (Fig. 13c, d) represent the third iteration with much lower
overheads (Fig. 14).

The values of the power α for ResNet50 are summarized in Table 5.
Just like in the case of VGG16 network, the batch size powers (β) in scaling

laws for the speedup can be calculated directly from their plots (not shown here for
brevity), except for the testing regime with overheads (Tables 6 and 7).

4.3 CapsNet

Again, the top images (Fig. 16a, b) represent the first and second iterations for GPU-
K80 (G1 and G2) and TPU (T1 and T2) where significant overheads were observed,
and the bottom images (Fig. 16c, d) represent the third iteration with much lower
overheads (Fig. 17).

The values of the power α for CapsNet are summarized in Table 8.
Again, the batch size powers (β) in scaling laws for the speedup can be calculated

directly from their plots (not shown here for brevity), except for the testing regime
with overheads (Tables 9 and 10).

86 Y. Gordienko et al.

Training Testing

(a) Strain(b) vs. b (b) Sinf (b) vs. b

(c) (),sc
train i b

S s b vs. si (d) ()inf ,sc
i b

S s b vs. si

(e) (),sc
train iS s b vs. b (f) ()inf ,sc

iS s b vs. b

Fig. 11 Speedups for training (left) and testing (right) regimes for the 1st and 2nd iterations with
big overheads, i.e. for Dd ∈ [G1, G2, T1, T2] for VGG16

Scaling Analysis of Specialized Tensor Processing Architectures … 87

Training Testing

(a) Strain(b) vs. b (b) Sinf(b) vs. b

(c) vs. si (d) vs. si

(e) vs. b (f) vs. b

(),sc
train i b

S s b ()inf ,sc
i b

S s b

(),sc
train iS s b ()inf ,sc

iS s b

Fig. 12 Speedups for training (left) and testing (right) regimes for 3rd iteration (without overheads)
for VGG16

Table 4 The batch size
powers (β) in scaling laws for
the speedup for VGG16

Speedup βSd,r , fitted from speedup plots

S1 S2 S3

Testing 0.10 ± 0.04 0.07 ± 0.06 0.23 ± 0.02

Training 0.16 ± 0.02 0.43 ± 0.01 0.44 ± 0.01

88 Y. Gordienko et al.

Table 5 The image size powers αDd,r in scaling laws for the running time for ResNet50

Time αTd,r , TPU αGd,r , GPU

T1 T2 T2 G1 G2 G3

Testing −0.33 ± 0.04 −0.36 ± 0.07 −0.59 ± 0.07 −0.47 ± 0.11 −1.08 ± 0.05 −1.19 ± 0.05

Training −0.04 ± 0.30 −0.24 ± 0.01 −0.25 ± 0.02 0.03 ± 0.02 −0.94 ± 0.05 −0.97 ± 0.04

Table 6 The image size powers in scaling laws for the speedup: α
f
Sd,r—fitted from the plots on

speedup, and α
pr
Sd,r—predicted from the scaling laws on running time for ResNet50

α
pr
Sd,r = αGd,r − αTd,r predicted from time

scaling

α
f
Sd,r fitted from speedup plots

S1 S2 S3 S1 S2 S3

Testing −0.14 ± 0.11 −0.72 ± 0.07 −0.6 ± 0.07 −0.38 ± 0.50 −1.31 ± 0.75 −0.76 ± 0.11

Training 0.07 ± 0.30 −0.7 ± 0.05 −0.72 ± 0.04 0.21 ± 0.08 −0.85 ± 0.04 −0.91 ± 0.04

Training Testing(a) (b)

(c) (d)

Fig. 13 Time (per image) versus image size for training (left) and testing (inference) (right) regimes
for ResNet50. Each curve corresponds to the batch size and iteration denoted in the legend

Scaling Analysis of Specialized Tensor Processing Architectures … 89

Training Testing

(a) ttrain(b) vs. b (b) tinf(b) vs. b

(c) vs. si (d) vs. si

(e) vs. b (f) vs. b

(),sc
train i b

t s b ()inf ,sc
i b

t s b

(),sc
train iF s b ()inf ,sc

iF s b

Fig. 14 Time per image for training (left) and testing (right) regimes for 3rd iteration (without
overheads) for ResNet50

90 Y. Gordienko et al.

Training Testing

(a) Strain(b) vs. b (b) Sinf(b) vs. b

(c) vs. si (d) vs. si

(e) vs. b (f) vs. b

(),sc
train i b

S s b ()inf ,sc
i b

S s b

(),sc
train iS s b ()inf ,sc

iS s b

Fig. 15 Speedups for training (left) and testing (right) regimes for 3rd iteration (without overheads)
for ResNet50

Table 7 The batch size
powers (β) in scaling laws for
the speedup for ResNet50

Speedup βSd,r , fitted from speedup plots

S1 S2 S3

Testing 0.35 ± 0.09 0.71 ± 0.12 0.48 ± 0.02

Training 0.36 ± 0.18 0.63 ± 0.03 0.65 ± 0.03

Scaling Analysis of Specialized Tensor Processing Architectures … 91

Training Testing(a) (b)

(c) (d)

Fig. 16 Time (per image) versus image size for training (left) and testing (inference) (right) regimes
for CapsNet. Each curve corresponds to the batch size and iteration denoted in the legend

5 Discussion

The significant speedup values for usage of TPU in comparison toGPUwere obtained
for quite algorithmically different models for the later iterations (>2nd) when the
starting overheads do not have impact:

• VGG16—up to 10 × for training regime (Fig. 12a) and up to 10 × for testing
regime (Fig. 12b),

• ResNet50—up to 6 × for training regime (Fig. 15a) and up to 30 × for testing
regime (Fig. 15b),

• CapsNet—up to 2× for training regime (Fig. 18a) and up to 4× for testing regime
(Fig. 18b).

These values were reached even for extremely low-scale usage of Google TPUv2
units (8 cores only) in comparison to the quite powerful GPU unit (NVIDIA Tesla
K80). But the crucial difference between GPU and TPU architectures is the radically
different values of latency time for specific data preparation and software compilation
(much higher for TPU) before the 1st and 2nd iterations. This difference in the favor
of GPU and that is why no speedup >1 was observed for all models at the 1st and
2nd iterations (Fig. 11).

92 Y. Gordienko et al.

Training Testing

(a) ttrain(b) vs. b (b) tinf (b)vs. b

(c) vs. si (d) vs. si

(e) vs. b (f) vs. b

(),sc
train i b

t s b ()inf ,sc
i b

t s b

(),sc
train iF s b ()inf ,sc

iF s b

Fig. 17 Time per image for training (left) and testing (right) regimes for 3rd iteration (without
overheads) for CapsNet

Table 8 The image size powers αDd,r in scaling laws for the running time for CapsNet

Time αTd,r , TPU αGd,r , GPU

T1 T2 T3 G1 G2 G3

Testing −2.21 ± 0.07 −2.78 ± 0.10 −2.78 ± 0.10 −2.30 ± 0.21 −2.92 ± 0.06 −2.92 ± 0.07

Training −2.08 ± 0.03 −2.74 ± 0.06 −2.74 ± 0.07 −1.78 ± 0.14 −2.95 ± 0.17 −2.96 ± 0.17

Scaling Analysis of Specialized Tensor Processing Architectures … 93

Table 9 The image size powers in scaling laws for the speedup: α
f
Sd,r—fitted from the plots on

speedup, and α
pr
Sd,r—predicted from the scaling laws on running time for CapsNet

α
pr
Sd,r = αGd,r − αTd,r predicted from time

scaling

α
f
Sd,r fitted from speedup plots

S1 S2 S3 S1 S2 S3

Testing −0.09 ± 0.21 −0.14 ± 0.10 −0.14 ± 0.10 −0.56 ± 0.13 −0.42 ± 0. 80 −0.42 ± 0.08

Training 0.3 ± 0.14 −0.21 ± 0.17 −0.22 ± 0.17 −0.36 ± 0.15 −0.42 ± 0.10 −0.44 ± 0.10

Table 10 The batch size
powers (β) in scaling laws for
the speedup for CapsNet

Speedup βSd,r , fitted from speedup plots

S1 S2 S3

Testing 0.18 ± 0.05 0.07 ± 0.02 0.07 ± 0.02

Training 0.07 ± 0.03 0.03 ± 0.02 0.05 ± 0.02

The speedup values depend on the utilization level of TPUv2 units and increase
start (i.e. speedup becomes >1) for different values of batch and image sizes for quite
algorithmically different models for the later iterations (>2nd) when the starting
overheads do not have impact:

• VGG16—for all batch and image sizes, except for the smallest image size and
batch size <10 in training regime (Fig. 12a),

• ResNet50—for all batch and image sizes in testing regime, and for the various
batch size in training regime, for example for b > 102 for the smallest image size
(Fig. 15a),

• CapsNet—for all batch and image sizes, except for the smallest image size (s =
24) in training regime (Fig. 18a).

These results demonstrate that usage of TPAs as Google TPUv2 is more effective
(faster) than GPU for the large number of computations under conditions of low
calculation overheads and high utilization of TPU units. Moreover, these results
were obtained for several algorithmically different DNNs without detriment to the
accuracy and loss that were equal for bothGPU andTPU runs up to the 3rd significant
digit for MNIST dataset, and confirm the previous obtained similar results [21]. But
it should be noted that these results were obtained without detriment to the accuracy
and loss for the relatively simple MNIST dataset and low number of classes (=10).
The current investigations of impact of batch, image, and network size even are under
work now and their results will be published elsewhere [69].

The most important and intriguing results are the scale invariant behaviors of
time and speedup dependencies which allow us to use this scaling method to pre-
dict the running times on the new specific architectures without detailed information
about their internals even. The scaling dependencies and scaling powers are different
for algorithmically different DNNs (VGG16, ResNet50, CapsNet) and for architec-
turally different computing hardware (GPU and TPU).

94 Y. Gordienko et al.

Training Testing

(a) Strain(b) vs. b (b) Sinf(b) vs. b

(c) vs. si (d) vs. si

(e) vs. b (f) vs. b

(),sc
train i b

S s b ()inf ,sc
i b

S s b

(),sc
train iS s b ()inf ,sc

iS s b

Fig. 18 Speedups for training (left) and testing (right) regimes for 3rd iteration (without overheads)
for CapsNet

The crucial difference of the 1st and 2nd iterations in comparison to the 3rd
iterationmeans the availability of the starting data preparation andmodel compilation
procedures (starting overheads stated as “overheads” below). They take place during
the 1st iteration on GPU hardware, but during the 1st and 2nd iterations on TPU
hardware and these overheads are much longer for TPU hardware. The complexity
of the scaled speedup dependencies for early iterations (1st and 2nd) and their relative
simplicity for the late iterations (>2nd) reflect the sensitivity of DNNs to the initial

Scaling Analysis of Specialized Tensor Processing Architectures … 95

stages of different computing hardware. This complexity is related with the complex
and hidden (in proprietary TPUv2 hardware) details of data preparation and DNN
compilation for TPA. The reasons of this complexity and sensitivity of DNNs to TPA
should be the topic of future thorough investigations.

In addition to Google TPU architecture, the specific tensor processing hardware
tools are available in the other modern GPU-cards like Tesla V100 and Titan V
by NVIDIA based on the Volta microarchitecture with specialized Tensor Cores
Units (640 TCU) and their influence on training and inference speedup are under
investigation and will be reported elsewhere [69].

As far as the model size limits the available memory space for the maximum pos-
sible batch of images, other techniques could be useful for squeezing the model size,
like quantization and pruning [70–72], and investigation of batch size increase on per-
formance. These results can be used to optimize parameters of variousML/DL appli-
cations where a large batch of data should be processed, for example, in advanced
driver assistance systems (ADAS), where specialized TPA-like architectures can be
used [73].

6 Conclusions

In this work the short review is given for some currently available specialized tensor
processing architectures (TPA) targeted on neural network processing. The com-
puting complexity of the algorithmically different components of some deep neural
networks (DNNs) was considered with regard to their further use on such TPAs.

To demonstrate the crucial difference between TPU and GPU computing archi-
tectures, the real computing complexity of various algorithmically different DNNs
was estimated by the proposed scaling analysis of time and speedup dependencies
of training and inference times as functions of batch and image sizes.

Themain accentwasmade on thewidely used and algorithmically different DNNs
like VGG16, ResNet50, and CapsNet on the cloud-based implementation of TPA
(actually Google Cloud TPUv2). The results of performance study were demon-
strated by the proposed scaling method for estimation of efficient usage of these
DNNs on this infrastructure.

The most important and intriguing results are the scale invariant behaviors of
time and speedup dependencies which allow us to use the scaling method to predict
the running training and inference times on the new specific TPAs without detailed
information about their internals even. The scaling dependencies and scaling powers
are different for algorithmically different DNNs (VGG16, ResNet50, CapsNet) and
for architecturally different computing hardware (GPU and TPU).

These results give the precise estimation of the higher performance (throughput) of
TPAs as Google TPUv2 in comparison to GPU for the large number of computations
under conditions of low overhead calculations and high utilization of TPU units by
means of the large image and batch sizes.

96 Y. Gordienko et al.

In general, the usage of TPAs like Google TPUv2 is quantitatively proved to be
very promising tool for increasing performance of inference and training stages even,
especially in the view of availability of the similar specific TPAs like TCU in Tesla
V100 and Titan V provided by NVIDIA, and others.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
2. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Netw. 61, 85–117

(2015)
3. Wang, H., Raj, B.: On the origin of deep learning. arXiv preprint arXiv:1702.07800 (2017)
4. Bengio, Y.: Deep learning of representations: looking forward. In: International Conference on

Statistical Language and Speech Processing, pp. 1–37. Springer, Berlin, Heidelberg (2013)
5. Lacey, G., Taylor, G.W., Areibi, S.: Deep Learning on FPGAs: Past, Present, and Future. arXiv

preprint arXiv:1602.04283 (2016)
6. Nurvitadhi, E. et al.: Can FPGAs beat GPUs in accelerating next-generation deep neural net-

works? In: Proceedings ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA ’17), pp. 5–14 (2017)

7. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., Temam, O.: DianNao: a small-footprint
high-throughput accelerator for ubiquitous machine learning. In: Proceedings 19th Interna-
tional Conference on ASPLOS, pp. 269–284 (2014)

8. Akopyan, F. et al.: TrueNorth: design and tool flow of a 65mW1million neuron programmable
neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 34, 10 (2015),
1537–1557 (2015)

9. Ienne, P.: Architectures for Neuro-Computers: Review and Performance Evaluation. Technical
Report. EPFL, Lausanne, Switzerland (1993)

10. In: NVIDIA Corporation. Programming Tensor Cores in CUDA 9, Accessed 2019. https://
devblogs.nvidia.com/programming-tensor-cores-cuda-9

11. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. Int. Symp.
Comput. Archit. 45(2), 1–12 (2017)

12. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: an in-depth
concurrency analysis. In: Computing Research Repository (CoRR) (2018)

13. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
Adam, H.: MobileNets: efficient convolutional neural networks for mobile vision applications.
arXiv:1704.04861 (2017)

14. Real, E., Aggarwal, A., Huang, Y., Le, Q. V.: Regularized evolution for image classifier archi-
tecture search. arXiv:1802.01548 (2018)

15. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a
tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

16. Han, S., Mao, H., and Dally, W.J.: Deep compression: compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149 (2015)

17. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural
network. In: Advances in Neural Information Processing Systems, pp. 1135–1143 (2015)

18. Mallya, A., Lazebnik, S. Packnet: Adding multiple tasks to a single network by iterative prun-
ing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7765–7773 (2018)

19. Wang, E., et al.: Deep neural network approximation for custom hardware:WhereWe’ve Been,
Where We’re Going. arXiv preprint arXiv:1901.06955 (2019)

20. Kama, S., Bernauer, J., Sharma, S.: TensorRT Integration Speeds Up TensorFlow Inference,
Accessed 2019. https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference

http://arxiv.org/abs/1702.07800
http://arxiv.org/abs/1602.04283
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1901.06955
https://devblogs.nvidia.com/tensorrt-integration-speeds-tensorflow-inference

Scaling Analysis of Specialized Tensor Processing Architectures … 97

21. Kochura, Y., Gordienko, Y., Taran, V., Gordienko, N., Rokovyi, A., Alienin, O., Stirenko, S.:
Batch size influence on performance of graphic and tensor processing units during training and
inference phases. In: Hu, Z. et al. (Eds.) Proceedings ICCSEEA 2019, AISC 938, pp. 1–11
(2019)

22. NVIDIA Corporation. NVIDIA AI inference platform, Accessed 2019. https://www.nvidia.
com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/t4-inference-print-
update-inference-tech-overview-final.pdf

23. Blog, R, Haußmann, E.: Comparing Google’s TPUv2 against Nvidia’s V100 on ResNet-
50, Accessed 2019. https://www.hpcwire.com/2018/04/30/riseml-benchmarks-google-tpuv2-
against-nvidia-v100-gpu

24. Qi, C.: Invited talk abstract: challenges and solutions for embedding vision AI. In: 2018 1st
Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2), p. 2. IEEE (2018)

25. Tsimpourlas, F., Papadopoulos, L., Bartsokas, A., Soudris, D.: A design space exploration
framework for convolutional neural networks implemented on edge devices. IEEETrans. Com-
put. Aided Des. Integr. Circuits Syst. 37(11), 2212–2221 (2018)

26. Erofei, A.A., Druţa, C.F., Căleanu, C.D.: Embedded solutions for deep neural networks imple-
mentation. In: 2018 IEEE 12th International Symposium on Applied Computational Intelli-
gence and Informatics (SACI) 000425-000430. IEEE (2018)

27. Seppälä, S.: Performance of neural network image classification on mobile CPU and GPU,
Accessed 2019. https://aaltodoc.aalto.fi/bitstream/handle/123456789/31564/master_Seppälä_
Sipi_2018.pdf

28. Ignatov, A., Timofte, R., Chou,W.,Wang, K.,Wu,M., Hartley, T., VanGool, L.: Ai benchmark:
Running deep neural networks on android smartphones. In: European Conference on Computer
Vision, pp. 288–314. Springer, Cham (2018)

29. Zhu, H., Zheng, B., Schroeder, B., Pekhimenko, G., Phanishayee, A.: DNN-Train: Bench-
marking and Analyzing DNN Training, Accessed 2019. http://www.cs.toronto.edu/ecosystem/
papers/DNN-Train.pdf

30. Jäger, S., Zorn, H. P., Igel, S., Zirpins, C.: Parallelized training of Deep NN: comparison of
current concepts and frameworks. In: Proceedings of the Second Workshop on Distributed
Infrastructures for Deep Learning, pp. 15–20. ACM (2018)

31. Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A.,
Jia, Y., He, K.: Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv:1706.
02677 (2017)

32. You, Y., Zhang, Z., Hsieh, C., Demmel, J.: 100-epoch ImageNet Training with AlexNet in 24
Minutes. arXiv:1709.05011 (2017)

33. Le, Q. V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A. Y.: On optimization meth-
ods for deep learning. In Proceedings 28th International Conference on Machine Learning,
pp. 265–272 (2011)

34. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997 (2014)

35. Smith, S.L., Kindermans, P., Le, Q.V.: Don’t decay the learning rate, increase the batch size.
arXiv:1711.00489 (2017)

36. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks. arXiv:1708.
03888 (2017)

37. Masters, D., Luschi, C.: Revisiting small batch training for deep neural networks. arXiv preprint
arXiv:1804.07612 (2018)

38. Devarakonda, A., Naumov, M., Garland, M.: AdaBatch: adaptive batch sizes for training deep
neural networks. arXiv preprint arXiv:1712.02029 (2017)

39. Smith, L. N.: A disciplined approach to neural network hyper-parameters: Part 1 - learning
rate, batch size, momentum, and weight decay. arXiv preprint arXiv:1803.09820 (2018)

40. Kochura, Y., Stirenko, S., Alienin, O., Novotarskiy, M., Gordienko, Y., Performance analysis
of open source machine learning frameworks for various parameters in single-threaded and
multi-threaded modes. In: Advances in Intelligent Systems and Computing II. CSIT 2017.
Advances in Intelligent Systems and Computing, 689, pp. 243–256. Springer, Cham (2017)

https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/t4-inference-print-update-inference-tech-overview-final.pdf
https://www.hpcwire.com/2018/04/30/riseml-benchmarks-google-tpuv2-against-nvidia-v100-gpu
https://aaltodoc.aalto.fi/bitstream/handle/123456789/31564/master_Sepp%c3%a4l%c3%a4_Sipi_2018.pdf
http://www.cs.toronto.edu/ecosystem/papers/DNN-Train.pdf
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1709.05011
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1712.02029
http://arxiv.org/abs/1803.09820

98 Y. Gordienko et al.

41. Kochura, Y., Stirenko, S., Gordienko, Y.: Comparative performance analysis of neural networks
architectures on H2O platform for various activation functions. In: 2017 IEEE International
Young Scientists Forum on Applied Physics and Engineering, pp. 70–73 (2017)

42. Kochura, Y., Stirenko, S., Alienin, O., Novotarskiy, M., Gordienko, Y.: Comparative analysis
of open source frameworks for machine learning with use case in single-threaded and multi-
threaded modes. In: 12th IEEE International Scientific and Technical Conference on Computer
Sciences and Information Technologies (CSIT), 1, pp. 373–376 (2017)

43. Jouppi, N., Young, C., Patil, N., Patterson, D.: Motivation for and evaluation of the first tensor
processing unit. IEEE Micro 38(3), 10–19 (2018)

44. Dumoulin, V., Visin, F.: A guide to convolution arithmetic for deep learning. arXiv:1603.07285
(2016)

45. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: Proceedings 32nd International Conference on Machine Learning,
pp. 448–456 (2015)

46. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

47. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K. Q.: Densely connected convolutional
networks. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition
(2017)

48. Oyama, Y., et al.: Predicting statistics of asynchronous SGD parameters for a large-scale
distributed deep learning system on GPU supercomputers. In: IEEE International Conference
on Big Data (Big Data), pp. 66–75 (2016)

49. Viebke, A., Memeti, S., Pllana, S., Abraham, A.: CHAOS: a parallelization scheme for training
convolutional neural networks on Intel Xeon Phi. J. Supercomput. (2017)

50. Yan, F., Ruwase, O., He, Y., Chilimbi, T.: Performance modeling and scalability optimization
of distributed deep learning systems. In: Proceedings 21st ACM International Conference on
Knowledge Discovery and Data Mining, pp. 1355–1364 (2015)

51. Qi, H., Sparks, E.R., Talwalkar, A.: Paleo: a performance model for deep neural networks. In:
Proceedings International Conference on Learning Representations (2017)

52. Demmel, J., Dinh, G.: Communication-optimal convolutional neural nets. arXiv:1802.06905
(2018)

53. Seide, F., Fu,H.,Droppo, J., Li,G.,Yu,D.:On parallelizability of stochastic gradient descent for
speech DNNs. In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 235–239 (2014)

54. Awan, A.A., Bedorf, J., Chu, C.H., Subramoni, H., Panda, D.K.: Scalable Distributed DNN
Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Perfor-
mance Evaluation. arXiv preprint arXiv:1810.11112 (2018)

55. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database, Accessed 2019. http://
yann.lecun.com/exdb/mnist

56. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition. In: International Conference Learning Representations (2015)

57. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Advances inNeural
Information Processing Systems, pp. 3856–3866 (2017)

58. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: 12th USENIX
Symposium on Operating Systems Design and Implementation, pp. 265–283 (2016)

59. Sornette, D.: Critical Phenomena in Natural Sciences: Chaos, Fractals, Self-organization and
Disorder: Concepts and Tools. Springer Science & Business Media (2006)

60. Badii, R., Politi, A.: Complexity: Hierarchical Structures and Scaling in Physics, Vol. 6. Cam-
bridge University Press (1999)

61. Mantegna, R.N., Stanley, H.E.: Econophysics: scaling and its breakdown in finance. J. Stat.
Phys. 89(1–2), 469–479 (1997)

62. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439),
509–512 (1999)

http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1802.06905
http://arxiv.org/abs/1810.11112
http://yann.lecun.com/exdb/mnist

Scaling Analysis of Specialized Tensor Processing Architectures … 99

63. West, G.B., Brown, J.H., Enquist, B.J.: The origin of universal scaling laws in biology. Scaling
Biology, 87–112 (2000)

64. Cardy, J.: Scaling and Renormalization in Statistical Physics, Vol. 5. Cambridge University
Press (1996)

65. Gordienko, Y.G.: Molecular dynamics simulation of defect substructure evolution and mecha-
nisms of plastic deformation in aluminium nanocrystals. Metallofiz. Noveishie Tekhnol. 33(9),
1217–1247 (2011)

66. Torabi, A., Berg, S.S.: Scaling of fault attributes: a review. Mar. Pet. Geol. 28(8), 1444–1460
(2011)

67. Gordienko,Y.G.:Changeof scaling and appearance of scale-free size distribution in aggregation
kinetics by additive rules. Physica A 412, 1–18 (2014)

68. Gordienko, Y.G.: Generalized model of migration-driven aggregate growth—asymptotic dis-
tributions, power laws and apparent fractality. Int. J. Mod. Phys. B 26(01), 1250010 (2012)

69. Yu, J., Tian, S.: A review of network compression based on deep network pruning. In: 3rd
International Conference onMechatronics Engineering and Information Technology (ICMEIT
2019). Atlantis Press (2019)

70. Cheng, J., Wang, P.S., Li, G., Hu, Q.H., Lu, H.Q.: Recent advances in efficient computation of
deep convolutional neural networks. Front. Inf. Technol. Electron. Eng. 19(1), 64–77 (2018)

71. Zhu, M., Gupta, S.: To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878 (2017)

72. Gordienko, Yu., Kochura, Yu., Taran, V., Gordienko, N., Bugaiov, A., Stirenko, S.: Adaptive
iterative channel pruning for accelerating deep neural networks. XIth International Scientific
and Practical Conference on Electronics and Information Technologies, Lviv, Ukraine, 16–18
September, 2019 (accepted)

73. Li, Y., Liu, Z., Xu, K., Yu, H., Ren, F.: A GPU-outperforming FPGA accelerator architecture
for binary convolutional neural networks. ACM J. Emerg. Technol. Comput. Syst. 14(2), 1–16
(2018)

http://arxiv.org/abs/1710.01878

Assessment of Autoencoder Architectures
for Data Representation

Karishma Pawar and Vahida Z. Attar

Abstract Efficient representation learning of data distribution is part and parcel of
successful execution of any machine learning based model. Autoencoders are good
at learning the representation of data with lower dimensions. Traditionally, autoen-
coders have beenwidely used for data compression in order to represent the structural
data. Data compression is one of the most important tasks in applications based on
Computer Vision, Information Retrieval, Natural Language Processing, etc. The aim
of data compression is to convert the input data into smaller representation retain-
ing the quality of input data. Many lossy and lossless data compression techniques
like Flate/deflate compression, Lempel–Ziv–Welch compression, Huffman compres-
sion, Run-length encoding compression, JPEG compression are available. Similarly,
autoencoders are unsupervised neural networks used for representing the structural
data by data compression. Due to wide availability of high-end processing chips and
large datasets, deep learning has gained a lot attention from academia, industries
and research centers to solve multitude of problems. Considering the state-of-the-art
literature, autoencoders are widely used architectures in many deep learning appli-
cations for representation and manifold learning and serve as popular option for
dimensionality reduction. Therefore, this chapter aims to shed light upon applicabil-
ity of variants of autoencoders to multiple application domains. In this chapter, basic
architecture and variants of autoencoder viz. Convolutional autoencoder, Variational
autoencoder, Sparse autoencoder, stacked autoencoder, Deep autoencoder, to name a
few, have been thoroughly studied. How the layer size and depth of deep autoencoder
model affect the overall performance of the system has also been discussed. We also
outlined the suitability of various autoencoder architectures to different application
areas. This would help the research community to choose the suitable autoencoder
architecture for the problem to be solved.

K. Pawar (B) · V. Z. Attar (B)
Department of Computer Engineering & IT, College of Engineering Pune (COEP), Pune, India
e-mail: kvppawar@gmail.com

V. Z. Attar
e-mail: vahida.comp@coep.ac.in

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_4

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_4&domain=pdf
https://orcid.org/0000-0002-1715-6525
https://orcid.org/0000-0002-2285-7393
mailto:kvppawar@gmail.com
mailto:vahida.comp@coep.ac.in
https://doi.org/10.1007/978-3-030-31756-0_4

102 K. Pawar and V. Z. Attar

Keywords Autoencoders · Deep learning · Dimensionality reduction ·
Representation learning · Data representation

1 Introduction

Data representation plays a crucial role in designing a good model and eventual
success of machine learning algorithms. Inmachine learning, representation learning
allows a system to automatically discover the data representations required for feature
detection from raw input data. Dimensionality of learnt representation of data is an
important aspect since the performance of model tends to decline with increase in
number of dimensions required for representing the distribution of data. Therefore,
more emphasis has been given on the representation learning techniques by the
researchers worldwide to perform feature learning and feature fusion resulting into
compact and abstract representation of data [1].

A plethora of domain specific techniques have been evolved for learning the rep-
resentation of data at compact and high level abstraction. The most conventional
techniques such as Principal Component Analysis (PCA) and Latent Dirichlet Allo-
cation (LDA) use linear transformation for data representation.

The autoencoders (AEs) are good at data denoising and dimensionality reduction.
Theywork like dimensionality reduction technique such as PCAwhich project higher
dimensional data to a lower dimensional space and preserve the salient features of
data. However, PCA and autoencoders vary from each other in transformation they
apply. PCA applies linear transformation whereas autoencoders apply non-linear
transformations. Autoencoders are worse at compression than traditional methods
like JPEG, MP3, and MPEG, etc. Since compression and decompression functions
used in autoencoders are data-specific, autoencoders have problems generalizing to
datasets other than what they trained on.

In the quest for Artificial Intelligence, deep learning has turned out to be the
foremost solution applicable to solve complex problems in the domain of natural
language processing [2], topic modeling [3, 4], object detection [5–7], video ana-
lytics [8, 9], image classification [10], prediction [11], etc. to mention but a few.
Autoencoders have become the popular alternative for representation and manifold
learning of data distribution in deep learning approaches. Due to this, many vari-
ants of autoencoder architectures have been put forth with specific trait applicable in
unsupervised feature learning and deep learning.

This chapter gives detailed elaboration of what autoencoder is, taxonomy of
autoencoders, domain-wise applications and factors regulating the working of
autoencoders. The major contribution has been depicted in Fig. 1 as a central theme
of this chapter and can be highlighted as follows.

• In-depth study of state-of-the-art autoencoder architectures and variants such as
convolutional AE, regularized AE, variational AE, sparse AE, stacked AE, deep
AE, generative AE, etc. has been performed in this chapter.

Assessment of Autoencoder Architectures … 103

Variants of Autoencoders
Application specific autoencoders,
Regularized autoencoders, Robust

autoencoders tolerant to noise,
Generative autoencoders

Factors
Factors affecting performance of
autoencoders such as training,

objective function, activation function,
layer size and depth of network

Applications
Applications of autoencoders in

computer vision, artificial intelligence,
natural language processing, physics

based systems, big data analytics

Autoencoder and Graphical Taxonomy
General architecture and graphical

taxonomy based on variants, network
structure, methods for training,

implementation and regularization

Assessment of
Autoencoder
Architectures

Fig. 1 Central theme for assessment of autoencoder architectures

• The taxonomy of autoencoders corresponding to the factors required for designing
them has also been put forth.

• The impact of layer size, depth on the performance of themodel has been assessed.
• The applicability of variants of autoencoder architectures to different tasks has
also been presented in the tabulated form.

The contents of this chapter are structured as follows. Section 2 gives overview
of general architecture and proposed taxonomy of the autoencoders. The variants of
autoencoders have been discussed in Sect. 3. Section 4 deals with factors such as
training procedures, regularization strategies affecting the functionality of autoen-
coder based models. The characteristics of autoencoders along with their suitability
for the application or task have been summarized in Sect. 5. Conclusion is mentioned
in Sect. 6.

2 General Architecture and Taxonomy of Autoencoders

Autoencoders are self-supervised neural network architectures which are used to
perform data compression in which compression and decompression functions are
(i) lossy (ii) specific to data, and (iii) learnt from the data itself. For building an
autoencoder, three things, namely, an encoding function, a decoding function, and
a distance function are considered. Distance function is used for calculating the
information loss between the compressed representation and the original input. The
encoder and decoder are chosen to be parametric functions (expressed via neural
networks), and to be differentiable bydistance function. This enables the optimization

104 K. Pawar and V. Z. Attar

Encoder Decoder

Original
Input

Latent/ Compressed
Representation

Reconstructed
Input

x h r
Fig. 2 General architecture of an autoencoder

of parameters in encoder and decoder functions. The reconstruction loss can be
minimized using appropriate optimizers like Stochastic Gradient Descent (SGD).

The general idea of autoencoder is to pass an input data to an encoder to make
compressed representation of the input. The encoding function can be represented
as h = f (x) where h is the latent representation. The middle layer, also known as
“bottleneck layer,” is the compressed representation of data fromwhich original data
can be reconstructed. The compressed representation h is passed to the decoder to
get back the reconstructed data r. Decoding function is given by r = g(h).

The encoder and decoder are both built using neural networks. Thewhole network
is trained by minimizing the difference between input and output. There may be
some loss of information due to fewer units. The whole autoencoder is represented
mathematically by g(f (x)) = r . Figure 2 shows the general architecture of an
autoencoder.

The loss function for autoencoder is given as

L = |x − g(f (x))| (1)

where x is input such that x ∈ R
d and x is usually averaged over some input training

set. The loss L penalizes the function g(f (x)) for being different from x. This loss
L can be set as L2 regularization of their difference. Keeping the size of latent
representation small and choosing proper capacity of both encoding and decoding
functions, any architecture of autoencoder can be trained well. Figure 3 depicts the
taxonomy of autoencoders based on various factors to be considered for designing
the autoencoders. The details of components depicted in Fig. 3 have been given in
the sub-sequent sections of this chapter.

3 Variants of Autoencoders

Depending on the number of hidden layers present, autoencoders can be shallow or
deep. Shallow AEs have input layer, single hidden layer and output layer. Deep AEs

Assessment of Autoencoder Architectures … 105

Fig. 3 Taxonomy of autoencoders

have multiple hidden layers. Based on dimensionality of latent space vector (rep-
resentation) h, autoencoders can be classified as undercomplete and overcomplete
autoencoders. It is more important and useful to train the autoencoder for performing
the task of copying an input to output by constraining the latent representation. An
autoencoder whose dimension of latent space vector h is less than dimension of input
is called undercomplete. By undercomplete autoencoder, a model is forced to learn
the most essential features of training data. If encoding and decoding functions are
given too much capacity, then autoencoder will perform the task of copying the input
to output without learning the essential features of data distribution. This issue arises
when the dimensions of latent representation are equal to input dimensions, and in
case of overcomplete autoencoders, dimensions of latent representation are greater
than the input dimensions. The autoencoders can be implemented as fully connected,
convolution based or recurrent based units. The variants of autoencoders have been
discussed by following the categories as application specific AEs, regularized AEs,
Robust AEs tolerant to noise and generative AEs. Many variants of autoencoders

106 K. Pawar and V. Z. Attar

have been put forth till date under each of the mentioned categories. In this chapter,
widely used autoencoders have been discussed.

3.1 Application Specific Autoencoders

Vanilla autoencoder

This is the simplest form of autoencoder having 3 layers of neural network viz. input
layer for encoding, hidden layer representing the compressed representation and
output layer for decoding. Figure 4 shows the architecture of vanilla autoencoder.
Usually a single layer is not enough to learn the discriminative and representative
features from input data. Therefore, researchers employ deep encoders (multilayer or
deep) for better representation learning and dimensionality reduction. Hinton et al.
[11] first proposed deep autoencoder for dimensionality reduction.

Deep autoencoder

Deep autoencoder [11] constitutes two symmetrical deep belief networks for encod-
ing and decoding, each having 4–5 shallow layers. Restricted Boltzmann Machine
(RBM) acts as the basic block of the deep belief network. Deep autoencoder works
in 3 phases as pre-training, unrolling and fine-tuning.

Initially, a stack of RBMs having one layer for feature detection is used for pre-
training in such a way that feature activations outputted by first RBM are used as
input for the next RBM. These RBMs are unrolled after pre-training to get a deep
autoencoder which can be fine-tuned using back-propagation. Figure 5 shows the
design of deep autoencoder which is obtained by unrolling the stack of RBMs.

Encoder Decoder

“Bottleneck”
hidden layer

Original
Input

Reconstructed
Input

Fig. 4 Architecture of vanilla autoencoder

Assessment of Autoencoder Architectures … 107

1000

500

30

2000
W1

W2

W3

W4

500

W4
T

1000

2000

W3
T

W2
T

W1
T

Encoder

Decoder

Latent
Representation

Original Input

Reconstructed Input

Fig. 5 Deep autoencoder [11]

Divergent autoencoder (DIVA)

Divergent autoencoder [12] is good at solving the N-way classification tasks. It trans-
forms input into distributed representational space. The deviation between recon-
structed and original input is used for classification.

Convolutional autoencoder (CONV AE)

Instead of using fully connected layers, convolution operators used in convolutional
autoencoder extracts useful representation from input data. In this, input image is
downsampled to get the latent representation having lesser dimensions and autoen-
coder is forced to learn the compressed representation of the image. Figure 6 shows
the working of convolutional autoencoder.

Encoder is implemented as a typical convolutional pyramid in which each con-
volution layer is followed by the max pooling layer for reducing the dimensions of
an image. As shown in Fig. 6, the dimensions of grey scale input image are 28 ×
28 × 1 (vector with 784 dimensions). By successive application of convolution and
max-pooling layers, the reduced latent representation of the image with dimensions

108 K. Pawar and V. Z. Attar

28×28×1 Input

28×28×16 Convolution

14×14×16 MaxPool

14×14×8 Convolution

7×7×8 MaxPool

7×7×8 Convolution

4×4×8 MaxPool

7×7×8 Upsample

7×7×8 Convolution

14×14×8 Upsample

14×14×8 Convolution

28×28×8 Upsample

28×28×16 Convolution

28×28×1 Convolution

Encoder

Decoder

Latent
Representation

Original Input

Reconstructed Input

Fig. 6 Architecture of convolutional autoencoder [69]

4 × 4 × 8 is obtained. Decoder converts a narrow representation of image into wide
reconstructed image having dimensions 28 × 28 × 1 by successive application of
upsampling and transposed convolution. The compression is lossy in convolutional
autoencoder. Generally, conversion of narrow representation of image into expanded
one can be done using 2 ways viz. upsampling and transposed convolution (decon-
volution). Upsampling performs resizing of image by stretching it. The techniques
like nearest neighbor interpolation or bilinear interpolation are used for upsampling.

As claimed in [13], nearest neighbor interpolation works better for upsampling.
Transposed convolution works exactly as convolution layers, but in reverse manner.
For example, convolving a 3 × 3 kernel over image patch of size 3 × 3 would result
into patch of one unit in the convolution layer. On the contrary, one unit of patch in the
input layer would expand to a patch of 3× 3 in the transposed convolution. Applying

Assessment of Autoencoder Architectures … 109

the transposed convolutionon images results into generationof checkerboard artifacts
on the reconstructed images [13].

For accurately extracting the information from a network, many problems in the
domain of computer vison, social network analysis and natural language processing
are represented using graph or the network structure. Depth-based subgraph convo-
lutional autoencoder (DS-CAE) [14] models node content information and network
structure for network representation learning. It maps graphs to high-dimensional
non-linear spaces preserving both the local and global information in the original
space. It uses convolution filters for extracting the local features by convolving over
the complete set of sub-graphs of a vertex.

RNN based AE

Sequence prediction problems are challenging to handle since the length of input
sequences varies in sequence prediction problems and most of the neural networks
require fixed length input for processing. Another challenge is temporal ordering
of observations make feature extraction a difficult task since providing an input to
supervised neural network models need domain expertise. Many applications based
on predictive modeling need prediction as output which itself is a sequence. There-
fore, recurrent neural networks (RNNs) such as Long Short-Term Memory (LSTM)
are designed to support sequence data as input. RNN Encoder-Decoder model pro-
posed in [15] is good at handling the sequence prediction problem like statistical
machine translation. The encoder and decoder in this model are built using recurrent
neural networks.

In RNN based AE, variable length input sequence is mapped to fixed-length
vector using encoder. This fixed-length vector is mapped back to variable-length
output sequence using decoder. Both encoder and decoder have been jointly trained
for maximizing the probability of output sequence given an input sequence.

LSTM autoencoder

Srivastava et al. [16] described the LSTM autoencoder as an extension to RNN based
AE for learning the representation of time series sequential data, audio, text and
videos. In this model, encoder and decoder are built using LSTM. Encoder LSTM
accepts a sequence of vectors in the form of images or features. Decoder LSTM
recreates the target sequence of input vectors in the reverse order. As claimed by the
authors, recreating the input sequence in reverse ordermakes the optimization process
more tractable. Decoder is designed using 2 ways viz. conditional and unconditional.
A conditional decoder receives previously constructed output frame as input whereas
unconditional decoder does not receive previously created output frame.

Composite LSTM autoencoder

Composite LSTM autoencoder [16] performs both the tasks of reconstructing the
sequence of video frames and prediction of next video frame. In this, encoder LSTM
represents such a state based on which next few frames can be predicted, and input
frames can be reconstructed.

110 K. Pawar and V. Z. Attar

3.2 Regularized Autoencoders

Regularized autoencoder (RAE)

Regularized autoencoders use a loss function so that model supports the following
properties as ability to reconstruct the input by learning the distribution of data, sparse
representation, and robustness to handle noisy data [17]. Though model can serve as
a nonlinear and overcomplete autoencoder, it can still learn the salient features from
distribution of input data.

Sparse autoencoder (SAE)

Sparse autoencoders are used for extracting the sparse features from the input data.
The two ways for imposing the sparsity constraint on the representation can be given
as follows. (i) applyingpenalty on the biases of the hiddenunits [18, 19] (ii) penalizing
the output of latent space (hidden unit) activation [20]. In sparse autoencoders [18,
21] hidden units are more than input units although only a small number of hidden
units can be active at some time. Sparse autoencoders impose sparsity penalty �(h)

on the hidden layer in addition to the reconstruction error for preventing the output
layer from copying input data. Therefore, the loss function can be given as shown in
Eq. (2) where �(h) is sparsity penalty.

L = |x − g(f (x))| + �(h) (2)

A variant of sparse autoencoder, specifically 9-layered locally connected sparse
encoder with pooling and local contrast normalization has been put forth in [22].
The model trained using this autoencoder performs face detection using unlabeled
data. This autoencoder is invariant to translation, scale and out-of-plane rotation.
Much research work has focused on representation learning from the data. Feature
representation algorithms based on nonnegativity-constrained autoencoder and SAE
causes feature redundancy and overfitting due to duplicate encoding and decoding
receptive fields. Cross-variance based regularized autoencoders regularize the feature
weight vectors to alleviate feature redundancy and reduce overfitting [23].

Stacked autoencoder

A neural network having multiple layers of sparse autoencoder is known as stacked
autoencoder. Adding more hidden layers to an autoencoder causes reduction of high
dimensional data. This enables a compressed representation to exhibit the salient
features of data such that every ith layer has more compact representation than layer
at i − 1 level. In stacked autoencoder, each successive layer in model is optimally
weighted and it is non-linear.

Saturating autoencoder (SATAE)

Saturating autoencoder [24] constraints the ability of autoencoder to reconstruct the
input data which are not near the data manifold. It acts as a latent state regularizer
for the autoencoders whose activation functions of latent space possess at least one

Assessment of Autoencoder Architectures … 111

saturated region with zero-gradient. Sparse and saturating autoencoders regularize
their latent states to prevent autoencoder from learning the reconstruction of the
input data and thus focuses on improving the expressive power of autoencoders to
represent the data-manifold.

Hessian regularized sparse autoencoder (HSAE)

HSAE [25] encompasses three terms viz. reconstruction error, sparsity constraint
and Hessian regularization. Reconstruction error computes the loss between input
sample and reconstructed sample. Sparsity constraint enables to learn the hidden
representation of data and makes the model robust to noise. Hessian regularization
preserves the local structure and controls the linearly varying learned encoders along
the manifold of data distribution. This autoencoder can be improved to support large
scale multimedia data by parallelizing the autoencoder algorithm.

Contractive autoencoder (CAE)

Rifai et al. [26] put forth a contractive autoencoder model with an aim to learn the
robust representation of data. Explicit regularizer is added in the objective function
of contractive autoencoder to make the model robust to slight variation in input data.
Equation (3) [17] showing the loss function of contractive autoencoder is given as

L = |x − g(f (x))| + �(h) = |x − g(f (x))| + λ

∥
∥
∥
∥

∂f(x)

∂x

∥
∥
∥
∥

2

F

(3)

where penalty term �(h) for the hidden layer is calculated w.r.t. input x which is
known as Frobenius norm of the Jacobian matrix. Sum of square of all elements
is given by Jacobian matrix. Contractive autoencoders are better than denoising
autoencoders for feature learning. The mapping generated by penalty term results
into strong contraction of data and therefore it is termed as contractive autoencoder.

Higher order CAE

Rifai et al. [27] extended the approach of contractive autoencoder for improving the
robustness to corrupted data and stabilizing the learned representation around the
training points for manifold learning. They explicitly performed the regularization
of latent state representation using first order derivative (Jacobian norm) and second
order derivative (Hessian norm) for improving feature learning and optimizing the
classification error.

Alain et al. [28] mentioned that both denoising and contractive autoencoders have
similar training criterion i.e. denoising autoencoder having small corruption noise can
be considered as a variant of contractive autoencoder where contraction is applied on
entire reconstruction function instead of just the encoder. Both autoencoders support
unsupervised and transfer learning [29].

Zero-bias autoencoder

Whenever contraction penalties or sparse penalties are used as explicit regularization
strategies while training on large number of hidden units, hidden biases reach large

112 K. Pawar and V. Z. Attar

negative biases. The reason behind this is that hidden layers serve the purpose of both
representing the input data and maintaining the sparse representation. Therefore, to
avoid the detrimental effects of large valued negative biases, Konda et al. [30] put
forth zero-bias autoencoder which acts as an implicit regularizer and allows training
the model without explicit regularization by simply minimizing the reconstruction
error.

k-sparse autoencoder

The k-sparse autoencoder put forth in [31] is an autoencoder with linear activation in
which only the selected k highest neurons from hidden layer are used for reconstruct-
ing the input. This autoencoder approximates sparse coding algorithm which uses
“iterative thresholding with inversion method” in sparse recovery phase. It enforces
sparsity across different channels, known as population sparsity. The population spar-
sity is exactly enforced in the hidden units and this autoencoder does not need any
non-linearity and regularization.

Winner-Take-All Autoencoders (WTA)

Winner-Take-All Autoencoders [32] have been put forth for hierarchical sparse rep-
resentation of data using unsupervised learning. The first variant of WTA, namely,
fully connected WTA (FC-WTA) enforces lifetime sparsity constraint [33] on the
hidden unit activations with the help of mini batch statistics. Lifetime sparsity is
applied across whole training examples.

Another variant—convolutional WTA (CONV-WTA) combines the benefits of
convolutional networks and autoencoders for learning shift-invariant sparse repre-
sentation of data. Both these variants are scalable to large datasets like ImageNet for
classification and support unsupervised feature learning.

Smooth autoencoder

Unlike conventional autoencoders which reconstruct the data from encoding, smooth
autoencoder [34] reconstructs the target neighbors of sample by using encoded repre-
sentation of each sample. This enables to capture similar local features and enhance
inter-class similarity for classification task.

Deep kernelized AE

The variant of stacked AE, namely deep kernelized AE [35] leverages user-defined
kernel matrix and learns to preserve non-linear similarities in the input space. By this
autoencoder, user can explicitly control the notion of similarity in the input data by
encoding it in a positive semi-definite kernel matrix. This autoencoder is useful for
classification tasks and visualization of high dimensional data.

Graph structured autoencoder

A graph regularized version of autoencoder has been proposed in [36]. The first
variant of this AE works in unsupervised manner for image denoising. Another
variant, namely, low-rank representation regularized graph autoencoder incorporates
subspace clustering terms into its formulation to perform the task of clustering. The

Assessment of Autoencoder Architectures … 113

third variant of graph structuredAE incorporates label consistency for solving single-
and multi-label classification problems in supervised settings.

Group sparse autoencoder (GSAE)

Sankaran et al. [37] proposed Group sparse autoencoder based representation learn-
ing approach. It works in supervised learning mode and uses �1 and �2 norms uti-
lizing the class labels for learning the supervised features for the specific task. The
optimization function in this AE works on majorization-minimization approach. It
performs classification using cost-sensitive version of support vector machine with
radial basis function network.

3.3 Robust Autoencoders Tolerant to Noise

Denoising autoencoder

For increasing the robustness of autoencoder to changes in the input, Vincent [38,
39] put forth a denoising autoencoder. Rather than penalizing the loss function for
regularization, noise is added to the image x and this noisy image x̃ is fed as input
to the denoising autoencoder. Figure 7 gives the general architecture of denoising
autoencoder. Stochastic mapping is used for denoising purpose in denoising AE.
In DAE, corrupted copy of the input data is created by introducing some noise. It
encodes the input and tries to undo the effect of corruption applied to input image.

This autoencoder is trained to generate the cleaned images from the noisy one.
As it is harder to generate the cleaned image, this model requires more deep layers
and more feature maps. For every iteration of the training, the network computes
a loss between reconstructed noisy image obtained from decoder and the original
noise-free image and tries to minimize the loss.

Denoising Autoencoder Self-organizing Map (DASOM)

DASOM [40] addresses the issue of integrating the non-linearities of neurons into
networks for modelling more complex functions. It works by interposing a layer

Encoder Decoder

Original
Input

Latent/ Compressed
Representation

Reconstructed
Input

Addition of noise
to original Input

x h rx~

Fig. 7 Architecture of denoising autoencoder [38]

114 K. Pawar and V. Z. Attar

of hidden representation between the input space and the neural lattice of the self-
organizing map. This AE is useful in optical recognition of images and text.

Stacked denoising autoencoder (SDAE)

Stacking DAEs for creating a deep network works in similar manner as stacking the
RBMs in deep belief networks [11]. In SDAE, input corruption is applied to each
individual layer for initial denoising and training to learn the salient features from
data. After learning of latent encoding function fθ , it is applied on the uncorrupted
input onwards. For training the next layers in the model, uncorrupted input from
previous layers are used as clean input for the next layer.

Marginalized denoising autoencoders (mDAE)

In DAEs, input data needs to be corrupted many times during training phase and this
causes increase in size of training data and incursmore computational resources. This
problem even gets worse when dimensionality of input data is very high. Marginal-
ized denoising autoencoders [41] address this issue by approximately marginalizing
out the data corruption process during training. It accepts the multiple corrupted
copies of input data in every iteration of training and outperforms DAE with few
training epochs. Instead of using explicit data corruption process, mDAEs implicitly
marginalize out the reconstruction error over possible data corruption from corrupt-
ing distribution such as additive Gaussian and Unbiased Mask-out/drop-out.

Hierarchical autoencoder

In stackedDAE, only the final layer is responsible for reconstructing the input sample
and intermediate layers do not directly contribute for reconstruction.

Hierarchical autoencoder [42] is designed such that intermediate layers provide
complementary information andoutput of each layer is fused toget final reconstructed
sample. This autoencoder is based on asymmetric autoencoder in which a stacked
autoencoder has only one decoder. A shallow nature of decoder alleviates the need to
train multiple layers, and therefore layers can directly contribute for reconstructing
the input.

3.4 Generative Autoencoders

Variational autoencoder (VAE)

In this autoencoder, bottleneck vector (latent vector) is replaced by two vectors,
namely, mean vector and standard deviation vector. Variational autoencoders [43] are
based on Bayesian inference in which the compressed representation follows prob-
ability distribution. Unlike vanilla autoencoders which learn the arbitrary encoding
function for obtaining the salient features, variational autoencoders learn the param-
eters of probability distribution which model the input training data; therefore VAEs
are complex in nature. The encoder network is forced to generate the latent vectors

Assessment of Autoencoder Architectures … 115

Fig. 8 Variational autoencoder [43]

following the unit Gaussian distribution. This constraint differentiates VAE from
standard autoencoder.

The working of variational autoencoder is depicted in Fig. 8. Generally, there is a
tradeoff between howaccurately the network reconstructs the images and howclosely
the latent variables match the unit Gaussian distribution. The reconstruction error
(generative loss) is measured using mean squared error whereas Kullback–Leibler
(KL) divergence loss measures the closeness of latent variables with unit Gaussian
distribution. Typical variational autoencoders are based on strong assumption that
posterior distribution is factorial whose parameters can be approximated using non-
linear regression based on observed samples.

Importance weighted autoencoder (IWAE)

Importance weighted autoencoder [44] is a generative model and a variant of vari-
ational autoencoder. It has similar architecture as that of VAE with the exception
that it utilizes strictly tighter log-likelihood lower bound obtained from importance
weighting and learns latent representation of data better than VAE.

Adversarial autoencoder

Adversarial autoencoder [45] uses generative network to perform variation inference
for both continuous and discrete latent vectors in probabilistic autoencoders. Figure 9
shows adversarial autoencoderwhich constitutes standard autoencoder and a network
for adversarial training. Standard AE reconstructs an image from latent vector h.
Adversarial training network is used for discriminatively predicting whether samples
are emanated either from hidden code or user specified distribution. VAE uses KL
divergence loss for imposing prior distribution on hidden code vector of autoencoder,
whereas adversarial autoencoder applies adversarial training method to match the
aggregated posterior of the hidden code representation with the prior distribution.

Varied distribution in multi-view data causes view discrepancy. It is important in
many practical applications to learn the common representations from multi-view
data. Wang et al. [46] proposed unsupervised multi-view representation learning

116 K. Pawar and V. Z. Attar

Fig. 9 Adversarial autoencoder [45]

method, namely, adversarial correlated autoencoder which learns common represen-
tation from multi-view data.

Wasserstein Autoencoders (WAE)

The drawback of variational autoencoders is that it generates blurry images when
natural images are used as input training data. The visual quality of images is quite
impressivewhen generative adversarial networks are used. But generative adversarial
networks suffer from “mode collapse” issue when a trained model is unable to learn
variability in the true data distribution.Wasserstein autoencoders have been designed
to combine the best properties of both VAEs and GANs in a unified way.

WAE [47] is used for designing the generative models based on optimal transport
perspective. It penalizes the Wasserstein distance between model distribution and
target distribution. In this, encoded training distribution is matched with the prior
distribution. Like variational autoencoder, objective function of WAE constitutes
a reconstruction cost and a regularizer penalizing the discrepancy between prior
distribution and distribution of encoded points.

Assessment of Autoencoder Architectures … 117

Adversarially Regularized Autoencoders (ARAE)

Adversarially Regularized Autoencoder [48] is based on WAE [47] and it is an
extended version of adversarial autoencoder [45] to support discrete sequences such
as discretized images or text sequences. Thismodel allowsmanipulating the variables
in latent space to incorporate change in the output space. It also handles sequential
data by incorporating both learned and fixed prior distribution.

Dynencoder

Dynencoder put forth by Yan et al. [49] represents spatiotemporal information of
a video. It constitutes three layers. The first layer performs mapping of input xt
to latent state ht . Next hidden state h̃t+1 is predicted by the second layer using
current state ht . The final layer performs mapping from predicted hidden state h̃t+1

to generate approximated input frame x̃t+1. Initially, each layer is trained separately
in pre-training phase. Once pre-training is over, an end-to-end fine-tuning of network
is done.

Stacked what-where auto-encoder (SWWAE)

SWWAE [50] synergistically combines the advantages of discriminative and gener-
ative models and acts as unified model to support unsupervised, semi-supervised and
supervised representation learning without making use of sampling during training.
It encodes the input using convolution net [51] and performs reconstruction using
deconvolution net [52]. It consists of feedforward convolution network coupled with
a feedback deconvolution network. Encoder is composed of convolution layer with
ReLU activation followed by max pooling layer. A pooling layer splits the infor-
mation into “what” and “where” components which are being described as max
values and switch positions respectively. The “what” variables inform the next layer
regarding the incomplete information about position and “where” variable inform the
corresponding feedback decoder the position (location) of salient features. The crux
of this model can be stated as whenever a layer is shown via many-to-one mapping,
this model computes complementary variables for reconstructing the input.

4 Factors Affecting Overall Performance of Autoencoders

Factors like training procedure, regularization, activation functions, etc. play crucial
role in successful implementation of any autoencoder based model.

4.1 Training

All the training procedures of autoencoder must maintain a tradeoff between follow-
ing two requirements.

118 K. Pawar and V. Z. Attar

1. Learning a latent representation of the input sample such that input can be recon-
structed via decoder through approximation: It is expected that autoencoder
should reconstruct the input by following the data-generating distribution.

2. Fulfilling the sparsity constraint or regularization penalty: Sparsity constraint
enables to limit the capacity of autoencoder. Regularization penalty is required
for imbibing special mathematical properties in the learned encodings.

Satisfying above two requirements together is important since they enforce hid-
den representation to capture the salient features from data based on its distribution.
Autoencoder should learn the variations in data so that input data can be recon-
structed.

Autoencoders may be considered as a special case of feedforward neural net-
works, and therefore they can be trained with same techniques as that of feedforward
networks such as minibatch gradient descent. SGD [53], and its variants Adam [54],
AdaGrad [55], and RMSProp are some algorithms used for optimization of weights
and biases in autoencoders during training. Other algorithms include L-BFGS and
conjugate gradient [56].

All these algorithms are based on gradient descent technique. Gradient descent
algorithm finds the parameters of a function f in the direction of steepest slope and
minimizes a cost function. Back-propagation algorithm [57] is used for calculating
the gradients of loss function from last layer to a first layer in a neural network to
adjust the weights.

Autoencoders may be trained using recirculation training algorithm [58] which
compares the activations of network on the training data and the activations on
reconstructed data. Generative models implemented via deep architectures generally
follow greedy layer-wise pre-training strategy. Another way to train the deep model
is to train a stack of the shallow autoencoders. With the growing volume of large
scale unlabeled data and need to investigate different types of regularizers, Zhou et al.
[59] proposed unsupervised learning method for jointly training all layers of deep
autoencoder. In this, single objective for training deep autoencoder encompasses
global reconstruction objective having local constraints on hidden layers to enable
joint training.

4.2 Objective Function

The objective function of autoencoder encompasses reconstruction error and penalty
terms expressed via sparsity constraints and/or regularization.

Reconstruction error can be calculated using mean squared error (MSE), cross
entropy and correntropy [60]. MSE gives an average squared difference between
the actual and predicted values. Cross-entropy is used for quantifying the difference
between two probability distributions. Correntropy checks the equality of probability
density of two distributions. Correntropy measure is more robust to the outliers than
MSE.

Assessment of Autoencoder Architectures … 119

Regularization helps to make the model generalize well on new unseen data. It
can be performed via data, network architecture, optimization, error function, and
regularization term [61]. The effectiveness of generative models can be improved
by discriminative regularization. In this, supervised learning algorithms augment
generative models to discriminate which features of data are worth to be represented
[62]. To understand how well autoencoders represent the data, energy function [63]
or un-normalized score [64] can be used which relate AE to probabilistic model such
as RBM. To avoid overfitting of autoencoders, regularization term is added to the
objective function causing weight decay [65].

Weight decay improves generalization by choosing the smallest vector to surpass
the irrelevant components of the weight vector. Other ways of performing regulariza-
tion are contraction and sparsity constraints. Encodings generated by basic autoen-
coders do not possess special properties. To imbibe mathematical properties in these
encodings, some regularization methods add penalty function to the objective func-
tion. Sparse autoencoder, denoising autoencoder and contractive autoencoder are
some popular examples of regularized autoencoders. The penalty terms in regular-
ized autoencoders can be Frobenius norm of the Jacobian (first order derivative) or
Hessian norm (higher order derivative).

Regularization penalties may be either applied on activations of hidden units or
activation of output layer. Regularizers applying penalty on activations of hidden
units are termed as latent state regularizers.

While learning the sparse representationof data, sparsity constraintmaybe applied
across channels on population sample (population sparsity constraint) [31] or across
training examples (lifetime sparsity constraint) [33]. Another constraint, namely,
spatial sparsity constraint [32] is used for regularizing the autoencoder, and it requires
contribution of all dictionary atoms in reconstruction of input data. Rather than
reconstructing the input data from all hidden units of the featuremaps, spatial sparsity
constraint selects single largest hidden unit from each featuremap and sets remaining
units and their derivatives to zero. This makes sparsity level equal to the number of
feature maps. The decoder reconstructs the output with the help of active hidden
units and reconstruction error is back-propagated through these active hidden units
only.

Autoencoders are exceptionally good at learning the properties/features of data. In
order to verify how much useful information is exhibited by the features constructed
by the autoencoders for the task of classification, autoencoder node saliency method
based on principle of information theory has been proposed in [66]. In this, hidden
nodes are ranked according to their relevance to a learning task using supervised
node saliency method. Furthermore, interestingness of the latent representation is
computed using normalized entropy difference for verifying the classification ability
of the highly ranked nodes.

120 K. Pawar and V. Z. Attar

4.3 Activation Functions

Activation function transforms summed weighted input into the activation of node
or output. They play an important role of propagating the gradients in the network.
Activation function models the nonlinear behavior of most neural networks. Sigmoid
function (Standard logistic function) is the most widely used activation functions in
autoencoders. Another sigmoid function—hyperbolic tangent function is symmet-
ric over origin. As it generates steeper gradients, it should be preferred over other
activation functions [67]. Use of ReLU as an activation function is popular choice
in deep learning models. As ReLU function outputs 0 for negative values, it may
hamper the performance of autoencoders by degrading the reconstruction process
while decoding. Scaled exponential linear units (SELUs) [68] enable to train the
deep model having multiple layers and learn robust representation by employing
strong regularization. It addresses the issue of vanishing and exploding gradients.
Activation functions like linear function, binary function and ReLU are seldom used
in AEs.

4.4 Layer Size and Depth

Though autoencoders can be trained with single encoding layer and single decoding
layer, it is important to train the autoencoder using deep layers for better repre-
sentation learning. As previously mentioned, both encoder and decoder in autoen-
coder can be thought of as feedforward neural network (FNN); hidden layer in FNN
can approximate any function having arbitrary accuracy given that hidden layer has
enough nodes. This proves that autoencoder having single hidden layer can represent
the identity function following the distribution. But, as the mapping from input to
latent state (hidden code) is shallow, arbitrary constraints can’t be enforced in order
to make the hidden code follow sparse representation. A deep autoencoder having
at least one hidden layer (with enough hidden nodes) is able to approximate any
input data by mapping it to code. Depth of deep architecture reduces the computa-
tional cost of function/data representation, and exponentially reduces the quantity of
input training data for learning the functions. Deep autoencoders are better at data
compression than their shallow or linear counterparts [11].

5 Applications of Autoencoders

Autoencoders are found to be useful in many tasks such as classification, prediction,
feature learning, dimensionality reduction, anomaly detection, visualization, seman-
tic hashing, information retrieval, and other domain specific traits. Some autoen-
coders are designed considering the problem to be solved.

Assessment of Autoencoder Architectures … 121

Dimensionality reduction is one of most conventional applications of autoen-
coders. Lower dimensional representations enable to improve the performance of
model on the tasks like classification. The working of variants of autoencoder has
been widely investigated for classification task in the literature. Autoencoders like
RNN based autoencoder, LSTM encoder are preferably used for solving sequence
prediction problems.

Autoencoders such as deep convolutional autoencoders have been used for
anomaly detection, feature engineering. In case of anomaly detection, autoencoders
are trained for normal training data, and so reconstructed data also follow the distri-
bution of normal data and can’t generate the data not seen beforehand (anomalous
patterns). Therefore, reconstruction error is treated as an anomaly score. Autoen-
coders have also been used for semantic hashing to be applied on both textual data
and images. Hashing makes the search process faster by encoding the data to binary
codes.By and large, autoencoders have been extensively applied inmultitude of tasks.
Table 1 gives characteristics of different autoencoders along with their applications.

Table 1 Applications of autoencoders

Architecture Characteristics Applications

Deep autoencoder [11, 70] Performs pretraining via
stack of RBMs, unrolling the
structure, creating a deep
autoencoder which can be
finetuned using
back-propagation

Classification, regression,
compression, semantic
hashing, geochemical
anomaly detection

Convolutional autoencoders
[69, 71–73]

Preserves spatial locality by
sharing weights in each
convolution layer

Reconstruction of missing
parts in an image, image
colorization, generating super
resolution images, anomaly
detection, indoor positioning
system

DS-CAE [44] Performs local feature
extraction on graphs and
networks using convolution
operation

Network and graph
representation learning

RNN based AE [15] Handles variable-length input
and recreates variable length
output for sequence data and
applicable to handle
sequence-to-sequence
prediction problems

Statistical machine
translation, image captioning,
chat bots, generating
commands for gestures in a
sequential manner

LSTM AE and Composite
LSTM model [16]

Reconstructs input
vectors/frames and predicts
next vectors/frames and
applicable to handle
sequence-to-sequence
prediction problems

Action recognition, text
processing

(continued)

122 K. Pawar and V. Z. Attar

Table 1 (continued)

Architecture Characteristics Applications

Sparse autoencoder [18–20,
74]

Applies sparsity penalty on
hidden layer to prevent output
layer copying input data

Classification, segmentation,
inpainting, compression,
interpolation methods for
super-resolution

Saturating autoencoder [24] Good for feature extraction,
constraints the ability of
reconstructing the inputs
which are not near the data
manifold

Classification, denoising

HSAE [25] Incorporates reconstruction
error, sparsity constraint and
Hessian regularization for
robust manifold learning

Classification

Zero-bias autoencoder [30] Acts as implicit regularizer
for learning the very high
dimensional features
intrinsically

Feature learning from high
dimensional data such as
video and images

k-sparse autoencoder [31] Enforces sparsity constraint
on hidden layer and select k
neurons for reconstruction

Shallow and deep
discriminative learning tasks,
unsupervised feature learning

FC-WTA [32] Applies lifetime sparsity
constraint on hidden unit for
sparse data representation

Classification, unsupervised
feature learning

CONV-WTA [32] Learns shift-invariant sparse
representation of data by
applying spatial and lifetime
sparsity constraints

Classification, unsupervised
feature learning

Smooth AE [34] Reconstructs target neighbors
of each sample by respective
encoded representation of
sample

Data manifold representation,
classification

Denoising autoencoder [38,
39]

Reconstructs the correct data
from corrupted or noisy input
data, supports unsupervised
and transfer learning

Removing watermarks,
Image inpainting

mDAE [41] Considers multiple copies of
corrupted data and implicitly
marginalizes out the
reconstruction error over data
corruption

Representation learning

Hierarchical autoencoder [42] Good at handling analysis
and synthesis problems due
to shallow nature of decoder

Recommender systems

(continued)

Assessment of Autoencoder Architectures … 123

Table 1 (continued)

Architecture Characteristics Applications

Variational autoencoder [43,
75, 76]

Generates new data
augmenting the sample data
and works as a typical
generative adversarial model

Generative modeling, missing
data imputation, dimensional
sentiment analysis

IWAE [44] Learns richer latent
representation than VAEs by
utilizing importance
weighting

Generative modeling

Adversarial autoencoder [45] Uses adversarial training
method for variation
inference

Dimensionality reduction,
classification, unsupervised
clustering, disentangling the
style and content of images

Wasserstein Autoencoders
[47]

Minimizes optimal transport
cost in generative models

Generative modeling

ARAE [48] Works as deep latent variable
model and produces robust
representation for discrete
sequence data following both
WAEs and adversarial
autoencoders

Unaligned style transfer for
text (Discrete data)

Dynencoder [49] Captures video dynamics by
spatiotemporal representation
of video

Synthesizing dynamic
textures from video,
classification

SWWAE [50] Learns factorized
representation using
convolution and
deconvolution net to encode
invariance and equivariance
properties

Factorized representation
learning

Contractive autoencoder [57] Applies contractive penalty in
the activation unit of latent
state, captures the variation
stated by data, supports
unsupervised and transfer
learning

Classification

CFAN AE [77] Cascade of autoencoders
used for coarse to fine level
processing

Face alignment identification

Stacked Convolutional AE
[78]

Stack of convolutional
autoencoder trained using
online gradient descent

Hierarchical feature
extraction, unsupervised
learning, classification

Autoencoder for words [79] Performs encoding of words Indexing, ranking and
categorizing the words

(continued)

124 K. Pawar and V. Z. Attar

Table 1 (continued)

Architecture Characteristics Applications

Binary autoencoder [80] Represents hidden code layer
by binary vector, performs
reconstruction, follows
method of auxiliary
coordinates

Semantic hashing for images

ARGA and ARGVA [81] Adversarial models for
representing the graph data
on lower dimensional space
for graph analytics

Graph clustering, graph
visualization, link prediction

AdvCAE [46] Uses unsupervised learning
to obtain common
representation for multi-view
data by following generative
modeling

Cross-view classification and
cross-view retrieval

Generative Recursive AE [82] Learns hierarchical scene
structures by grouping scene
objects during encoding and
scene generation during
decoding

Generating diverse 3D indoor
scenes at large scale

Stacked convolution AE,
WGANs, Siamese network
[83, 84]

Learns patch-level
representation of subjects
using unsupervised feature
learning

Outlier detection in medical
image processing, pathology
image analysis

Optimized Deep
Autoencoder + CNN [85]

Performs feature extraction
using CNN and learns
temporal changes in video
streams at real time using
deep AE

Online data stream analysis,
action recognition

Spectral-spatial stacked
autoencoder [86]

Extracts spectral and spatial
features from hyperspectral
images using stacked AE

HSI analysis, Anomaly
detection from hyperspectral
images

Class Specific Mean
Autoencoder [87]

Uses class information of
sample data during training
for learning the intra-class
similarity and performs
feature extraction

Adulthood classification from
facial images

Stacked AE [88, 89] Learns structural features
from different stages of the
deep learning network

Wind power prediction,
tourism demand forecasting

Multilayer Perceptron with
Stacked DAE [90]

Captures non-linear
relationships, complex
interactions and structures
embedded in the input data

Prediction of gene expression
profiles from genotypes

(continued)

Assessment of Autoencoder Architectures … 125

Table 1 (continued)

Architecture Characteristics Applications

Stacked Contractive AE [91] Learns non-linear sub-space
from 2D and 3D images,
handles illumination changes
and complex surface shapes
in images

3D face reconstruction

Coherent Averaging
Estimation Autoencoder [92]

Models cost function as
multi-objective optimization
problem encompassing
reconstruction,
discrimination and sparsity
terms

Feature extraction of signals
in the domain of brain
computer interfaces

RODEO [93] Utilizes universal function
approximation capacity of
neural networks and leans the
reconstruction (non-linear
inversion) process from
training data

Compressed sensing based
real-time MRI and CT
reconstruction

Multimodal Stacked
Contractive AE [94]

Preservers intra-modality and
inter-modality semantic
relations in consecutive
stages of AE

Multi-modal video
classification

Deep AE + DAE [95] Synergistically combines
Deep AE based discriminant
bottleneck feature DAE based
dereverberation

Distant-talking speaker
identification

Distributed deep CONV AE
[96]

Learns complex hierarchical
structure of big data and
leverages processing power
of GPUs in a distributed
environment

Analysis of large
neuroimaging datasets

Deep kernelized AE [35] Preserves non-linear
similarities in the input space
by leveraging user-defined
kernel matrix

Classification, visualization
of high dimensional data

Graph structured autoencoder
[36]

Different variants of graph
structured AE, each
following either supervised
learning or unsupervised one

Image denoising, clustering,
single- and multi-label
classification

Group sparse autoencoder
[37]

Applies �1 and �2 norms for
supervised feature learning

Classification, latent
fingerprint recognition
required in forensic and law
enforcement applications

DASOM [40] Models complex functions by
integrating non-linearities of
neurons

Optical recognition of images
and text

(continued)

126 K. Pawar and V. Z. Attar

Table 1 (continued)

Architecture Characteristics Applications

Convolutional cross AE [97] Cross AE handles
cross-modality elements from
social media data and CNN
handles time sequence

Cross-media analysis

NGBAE [98] Models semantic distribution
of bilingual text through
explicitly induced latent
variable

Cross-lingual natural
language processing
applications like bilingual
word embeddings

Model-coupled AE [99] Combines echo state network
with the autoencoder

Visualization of time series
data, real-valued sequences
and binary sequences

Purifying VAE [100] Projects an adversarial
example on the manifold of
each class, and determines
the closest projection as a
purified sample

Defense mechanism for
purifying adversarial attacks
applicable in surveillance
systems

6 Conclusion

Representation learning from data plays a crucial role for successful implementa-
tion of deep learning models and helps to perform better generalization and achieve
acceptable performance. Autoencoders designed using neural networks work in an
excellent way for representation learning from data. The proliferation of deep learn-
ing has resulted into wide use of autoencoders due to their inherent feature learning
and dimensionality reduction characteristics.

The major contribution of this chapter can be stated as follows. This chapter
gives the foundational background of autoencoders and state-of-the-art variants of
autoencoder architectures. The graphical taxonomy of autoencoders based on various
factors required for designing the autoencoders has beenproposed. This chapter sheds
light upon role of activation functions, depth and layer size of neural network, training
strategies and regularization methods for autoencoders. The summarized overview
of autoencoders based on characteristics and applications has also been tabulated in
this chapter.

Appendix

List of abbreviations used in this chapter are mentioned in Table 2.

Assessment of Autoencoder Architectures … 127

Table 2 List of abbreviations Abbreviation Meaning

AdaGrad Adaptive Gradient

Adam Adaptive Moment Estimation

AdvCAE Adversarial Correlated Autoencoder

AE Autoencoder

ARAE Adversarially Regularized Autoencoder

ARGA Adversarially Regularized Graph Autoencoder

ARGVA Adversarially Regularized Variational Graph
Autoencoder

CAE Contractive Autoencoder

CONV AE Convolutional Autoencoder

CONV-WTA Convolutional Winner-Take-All Autoencoder

CT Computed Tomography

DASOM Denoising Autoencoder Self-Organizing Map

DIVA Divergent Autoencoder

FC-WTA Fully Connected Winner-Take-All
Autoencoder

FNN Feedforward Neural Network

GAN Generative Adversarial Network

GSAE Group Sparse Autoencoder

HSAE Hessian Regularized Sparse Autoencoder

HSI Hyperspectral Image

IWAE Importance Weighted Autoencoder

KL Kullback–Leibler

LDA Latent Dirichlet Allocation

LSTM Long Short-Term Memory

LZW Lempel–Ziv–Welch

mDAE Marginalized Denoising Autoencoder

MRI Magnetic Resonance Imaging

MSE Mean Squared Error

NGBAE Neural Generative Bilingual Autoencoder

PCA Principal Component Analysis

RAE Regularized Autoencoder

RBM Restricted Boltzmann Machine

ReLUs Rectified Linear Units

RNN Recurrent Neural network

SAE Sparse Autoencoder

SATAE Saturating Autoencoder

(continued)

128 K. Pawar and V. Z. Attar

Table 2 (continued) Abbreviation Meaning

SDAE Stacked Denoising Autoencoder

SELUs Scaled Exponential Linear Units

SGD Stochastic Gradient Descent

SWWAE Stacked What-Where Autoencoder

VAE Variational Autoencoder

WAE Wasserstein Autoencoder

WTA Winner-Take-All Autoencoder

References

1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives.
IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

2. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

3. Pathak, A.R., Pandey, M., Rautaray, S.: Adaptive framework for deep learning based dynamic
and temporal topic modeling from big data. Recent Pat. Eng. 13, 1 (2019). https://doi.org/10.
2174/1872212113666190329234812

4. Pathak, A.R., Pandey, M., Rautaray, S.: Adaptive model for dynamic and temporal topic
modeling from big data using deep learning architecture. Int. J. Intell. Syst. Appl. 11(6),
13–27 (MECS-Press)

5. Pathak, A.R., Pandey, M., Rautaray, S., Pawar, K.: Assessment of object detection using
deep convolutional neural networks. In: Bhalla, S., Bhateja, V., Chandavale, A.A., Hiwale,
A.S., Satapathy, S.C. (eds.) Intelligent Computing and Information and Communication,
pp. 457–466. Springer Singapore (2018)

6. Pathak, A.R., Pandey, M., Rautaray, S.: Deep learning approaches for detecting objects from
images: a review. In: Pattnaik, P.K., Rautaray, S.S., Das, H., Nayak, J. (eds.) Progress in
Computing, Analytics and Networking, pp. 491–499. Springer Singapore (2018)

7. Pathak, A.R., Pandey, M., Rautaray, S.: Application of deep learning for object detection.
Procedia Comput. Sci. 132, 1706–1717 (2018)

8. Pawar, K., Attar, V.: Deep learning approaches for video-based anomalous activity detection.
World Wide Web 22, 571–601 (2019)

9. Pawar, K., Attar, V.: Deep Learning approach for detection of anomalous activities from
surveillance videos. In: CCIS. Springer (2019, in Press)

10. Khare, K., Darekar, O., Gupta, P., Attar, V.Z.: Short term stock price prediction using deep
learning. In: 2nd IEEE International Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT), pp. 482–486 (2017)

11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks.
Science 313, 504–507 (2006)

12. Kurtz, K.J.: The divergent autoencoder (DIVA) model of category learning. Psychon. Bull.
Rev. 14, 560–576 (2007)

13. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill (2016).
https://doi.org/10.23915/distill.00003

14. Zhang, Z., et al: Depth-based subgraph convolutional auto-encoder for network representation
learning. Pattern Recognit. (2019)

15. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation (2014). http://arxiv.org/abs/1406.1078

16. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representa-
tions using LSTMs. In: International Conference on Machine Learning, pp. 843–852 (2015)

https://doi.org/10.2174/1872212113666190329234812
https://doi.org/10.23915/distill.00003
http://arxiv.org/abs/1406.1078

Assessment of Autoencoder Architectures … 129

17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
18. Poultney, C., Chopra, S., Cun, Y.L., et al.: Efficient learning of sparse representations with an

energy-basedmodel. In: Advances in Neural Information Processing Systems, pp. 1137–1144
(2007)

19. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area V2. In:
Advances in Neural Information Processing Systems, pp. 873–880 (2008)

20. Zou, W.Y., Ng, A.Y., Yu, K.: Unsupervised learning of visual invariance with temporal coher-
ence. In: NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning, vol.
3 (2011)

21. Jiang, X., Zhang, Y., Zhang, W., Xiao, X.: A novel sparse auto-encoder for deep unsupervised
learning. In 2013 Sixth International Conference on Advanced Computational Intelligence
(ICACI), pp. 256–261 (2013)

22. Le, Q.V., et al.: Building high-level features using large scale unsupervised learning (2011).
http://arxiv.org/abs/1112.6209

23. Chen, J., et al.: Cross-covariance regularized autoencoders for nonredundant sparse feature
representation. Neurocomputing 316, 49–58 (2018)

24. Goroshin, R., LeCun, Y.: Saturating auto-encoders (2013). http://arxiv.org/abs/1301.3577
25. Liu, W., Ma, T., Tao, D., You, J.H.S.A.E.: A Hessian regularized sparse auto-encoders. Neu-

rocomputing 187, 59–65 (2016)
26. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: explicit

invariance during feature extraction. In: Proceedings of the 28th International Conference on
International Conference on Machine Learning, pp. 833–840 (2011)

27. Rifai, S., et al.: Higher order contractive auto-encoder. In: Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 645–660 (2011)

28. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data-generating distri-
bution. J. Mach. Learn. Res. 15, 3563–3593 (2014)

29. Mesnil, G., et al.: Unsupervised and transfer learning challenge: a deep learning approach.
In: Proceedings of the 2011 International Conference on Unsupervised and Transfer Learning
Workshop, vol. 27, pp. 97–111 (2011)

30. Konda,K.,Memisevic,R.,Krueger,D.: Zero-bias autoencoders and the benefits of co-adapting
features (2014). http://arxiv.org/abs/1402.3337

31. Makhzani, A., Frey, B.: K-sparse autoencoders (2013). http://arxiv.org/abs/1312.5663
32. Makhzani, A., Frey, B.J.: Winner-take-all autoencoders. In: Advances in Neural Information

Processing Systems, pp. 2791–2799 (2015)
33. Ng, A.: Sparse Autoencoder. CS294A Lecture Notes, vol. 72, pp. 1–19 (2011)
34. Liang, K., Chang, H., Cui, Z., Shan, S., Chen, X.: Representation learning with smooth

autoencoder. In: Asian Conference on Computer Vision, pp. 72–86 (2014)
35. Kampffmeyer,M., Løkse, S., Bianchi, F.M., Jenssen, R., Livi, L.: The deep kernelized autoen-

coder. Appl. Soft Comput. 71, 816–825 (2018)
36. Majumdar, A.: Graph structured autoencoder. Neural Netw. 106, 271–280 (2018)
37. Sankaran, A., Vatsa, M., Singh, R., Majumdar, A.: Group sparse autoencoder. Image Vis.

Comput. 60, 64–74 (2017)
38. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust

features with denoising autoencoders. In: Proceedings of the 25th International Conference
on Machine Learning, pp. 1096–1103 (2008)

39. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoen-
coders: learning useful representations in a deep network with a local denoising criterion. J.
Mach. Learn. Res. 11, 3371–3408 (2010)

40. Ferles, C., Papanikolaou, Y., Naidoo, K.J.: Denoising autoencoder self-organizing map
(DASOM). Neural Netw. 105, 112–131 (2018)

41. Chen, M., Weinberger, K., Sha, F., Bengio, Y.: Marginalized denoising auto-encoders for
nonlinear representations. In: International Conference onMachine Learning, pp. 1476–1484
(2014)

http://arxiv.org/abs/1112.6209
http://arxiv.org/abs/1301.3577
http://arxiv.org/abs/1402.3337
http://arxiv.org/abs/1312.5663

130 K. Pawar and V. Z. Attar

42. Maheshwari, S., Majumdar, A.: Hierarchical autoencoder for collaborative filtering. In: 2018
International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2018)

43. Kingma,D.P.,Welling,M.:Auto-encodingvariational bayes (2013). http://arxiv.org/abs/1312.
6114

44. Burda, Y., Grosse, R., Salakhutdinov, R.: Importance weighted autoencoders (2015). http://
arxiv.org/abs/1509.00519

45. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders (2015).
http://arxiv.org/abs/1511.05644

46. Wang, X., Peng, D., Hu, P., Sang, Y.: Adversarial correlated autoencoder for unsupervised
multi-view representation learning. Knowl. Based Syst. (2019)

47. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.: Wasserstein auto-encoders (2017).
http://arxiv.org/abs/1711.01558

48. Kim, Y., Zhang, K., Rush, A.M., LeCun, Y., et al.: Adversarially regularized autoencoders
(2017). http://arxiv.org/abs/1706.04223

49. Yan, X., Chang, H., Shan, S., Chen, X.: Modeling video dynamics with deep dynencoder. In:
European Conference on Computer Vision, pp. 215–230 (2014)

50. Zhao, J., Mathieu, M., Goroshin, R., Lecun, Y.: Stacked what-where auto-encoders (2015).
http://arxiv.org/abs/1506.02351

51. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to
document recognition. Proc. IEEE 86, 2278–2324 (1998)

52. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: Confer-
ence on Computer Vision and Pattern Recognition, pp. 2528–2535. IEEE (2010)

53. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat., 400–407
(1951)

54. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). http://arxiv.org/abs/
1412.6980

55. Duchi, J., Hazan, E., Singer, Y.:Adaptive subgradientmethods for online learning and stochas-
tic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

56. Le, Q.V., et al.: On optimization methods for deep learning. In: Proceedings of the 28th
International Conference on International Conference on Machine Learning, pp. 265–272
(2011)

57. Rumelhart, D.E., Hinton, G.E., Williams, R.J., et al.: Learning representations by back-
propagating errors. Cogn. Model. 5, 1 (1988)

58. Hinton, G.E., McClelland, J.L.: Learning representations by recirculation. In: Neural Infor-
mation Processing Systems, pp. 358–366 (1988)

59. Zhou, Y., Arpit, D., Nwogu, I., Govindaraju, V.: Is joint training better for deep auto-encoders?
(2014). http://arxiv.org/abs/1405.1380

60. Qi, Y.,Wang,Y., Zheng,X.,Wu, Z.: Robust feature learning by stacked autoencoderwithmax-
imum correntropy criterion. In: 2014 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6716–6720 (2014)

61. Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep learning: a taxonomy (2017).
http://arxiv.org/abs/1710.10686

62. Lamb, A., Dumoulin, V., Courville, A.: Discriminative regularization for generative models
(2016). http://arxiv.org/abs/1602.03220

63. Kamyshanska,H.,Memisevic,R.: The potential energy of an autoencoder. IEEETrans. Pattern
Anal. Mach. Intell. 37, 1261–1273 (2015)

64. Kamyshanska, H., Memisevic, R.: On autoencoder scoring. In: International Conference on
Machine Learning, pp. 720–728 (2013)

65. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Advances in
Neural Information Processing Systems, pp. 950–957 (1992)

66. Fan, Y.J.: Autoencoder node saliency: selecting relevant latent representations. Pattern Recog-
nit. 88, 643–653 (2019)

67. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Neural Networks:
Tricks of the Trade, pp 9–48. Springer (2012)

http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1711.01558
http://arxiv.org/abs/1706.04223
http://arxiv.org/abs/1506.02351
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1405.1380
http://arxiv.org/abs/1710.10686
http://arxiv.org/abs/1602.03220

Assessment of Autoencoder Architectures … 131

68. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks.
In: Advances in Neural Information Processing Systems, pp. 971–980 (2017)

69. Leonard,M.: Deep LearningNanodegree Foundation Course. LectureNotes inAutoencoders.
Udacity (2018)

70. Xiong, Y., Zuo, R.: Recognition of geochemical anomalies using a deep autoencoder network.
Comput. Geosci. 86, 75–82 (2016)

71. Leng, B., Guo, S., Zhang, X., Xiong, Z.: 3D object retrieval with stacked local convolutional
autoencoder. Sig. Process. 112, 119–128 (2015)

72. Ribeiro, M., Lazzaretti, A.E., Lopes, H.S.: A study of deep convolutional auto-encoders for
anomaly detection in videos. Pattern Recognit. Lett. 105, 13–22 (2018)

73. Li, L., Li, X., Yang, Y., Dong, J.: Indoor tracking trajectory data similarity analysis with a
deep convolutional autoencoder. Sustain. Cities Soc. 45, 588–595 (2019)

74. Wan, X., Zhao, C., Wang, Y., Liu, W.: Stacked sparse autoencoder in hyperspectral data
classification using spectral-spatial, higher order statistics and multifractal spectrum features.
Infrared Phys. Technol. 86, 77–89 (2017)

75. McCoy, J.T., Kroon, S., Auret, L.: Variational autoencoders for missing data imputation with
application to a simulated milling circuit. IFAC PapersOnLine 51, 141–146 (2018)

76. Wu, C., et al.: Semi-supervised dimensional sentiment analysis with variational autoencoder.
Knowl. Based Syst. 165, 30–39 (2019)

77. Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-encoder networks (CFAN) for
real-time face alignment. In: European Conference on Computer Vision, pp. 1–16 (2014)

78. Masci, J., Meier, U., Cirecsan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for
hierarchical feature extraction. In: International Conference on Artificial Neural Networks,
pp. 52–59 (2011)

79. Liou, C.-Y., Cheng,W.-C., Liou, J.-W., Liou, D.-R.: Autoencoder for words. Neurocomputing
139, 84–96 (2014)

80. Carreira-Perpinan, M.A., Raziperchikolaei, R.: Hashing with binary autoencoders. In: The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

81. Pan, S., et al.: Adversarially regularized graph autoencoder for graph embedding (2018).
http://arxiv.org/abs/1802.04407

82. Li, M., et al.: GRAINS: generative recursive autoencoders for INdoor scenes. ACM Trans.
Graph. 38, 12:1–12:16 (2019)

83. Alaverdyan, Z., Chai, J., Lartizien, C.: Unsupervised feature learning for outlier detectionwith
stacked convolutional autoencoders, siamese networks and wasserstein autoencoders: appli-
cation to epilepsy detection. In: Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support, pp. 210–217. Springer (2018)

84. Hou, L., et al.: Sparse autoencoder for unsupervised nucleus detection and representation in
histopathology images. Pattern Recognit. 86, 188–200 (2019)

85. Ullah, A., Muhammad, K., Haq, I.U., Baik, S.W.: Action recognition using optimized deep
autoencoder and CNN for surveillance data streams of non-stationary environments. Futur.
Gener. Comput. Syst. (2019)

86. Zhao, C., Zhang, L.: Spectral-spatial stacked autoencoders based on low-rank and sparse
matrix decomposition for hyperspectral anomaly detection. Infrared Phys. Technol. 92,
166–176 (2018)

87. Singh, M., Nagpal, S., Vatsa, M., Singh, R.: Are you eligible? Predicting adulthood from face
images via class specific mean autoencoder. Pattern Recognit. Lett. 119, 121–130 (2019)

88. Tasnim, S., Rahman, A., Oo, A.M.T., Haque, M.E.: Autoencoder for wind power prediction.
Renewables Wind. Water Sol. 4, 6 (2017)

89. Lv, S.-X., Peng, L., Wang, L.: Stacked autoencoder with echo-state regression for tourism
demand forecasting using search query data. Appl. Soft Comput. 73, 119–133 (2018)

90. Xie, R., Wen, J., Quitadamo, A., Cheng, J., Shi, X.: A deep auto-encoder model for gene
expression prediction. BMC Genom. 18, 845 (2017)

91. Zhang, J., Li, K., Liang, Y., Li, N.: Learning 3D faces from 2D images via stacked contractive
autoencoder. Neurocomputing 257, 67–78 (2017)

http://arxiv.org/abs/1802.04407

132 K. Pawar and V. Z. Attar

92. Gareis, I.E., Vignolo, L.D., Spies, R.D., Rufiner, H.L.: Coherent averaging estimation autoen-
coders applied to evoked potentials processing. Neurocomputing 240, 47–58 (2017)

93. Mehta, J., Majumdar, A.: RODEO: robust DE-aliasing autoencoder for real-time medical
image reconstruction. Pattern Recognit. 63, 499–510 (2017)

94. Liu, Y., Feng, X., Zhou, Z.: Multimodal video classification with stacked contractive autoen-
coders. Sig. Process. 120, 761–766 (2016)

95. Zhang, Z., et al.: Deep neural network-based bottleneck feature and denoising autoencoder-
based dereverberation for distant-talking speaker identification. EURASIP J. Audio Speech
Music Process. 2015, 12 (2015)

96. Makkie, M., Huang, H., Zhao, Y., Vasilakos, A.V., Liu, T.: Fast and scalable distributed deep
convolutional autoencoder for fMRI big data analytics. Neurocomputing 325, 20–30 (2019)

97. Guo, Q., et al.: Learning robust uniform features for cross-media social data by using cross
autoencoders. Knowl. Based Syst. 102, 64–75 (2016)

98. Su, J., et al.: A neural generative autoencoder for bilingual word embeddings. Inf. Sci. (Ny)
424, 287–300 (2018)

99. Gianniotis, N., Kügler, S.D., Tino, P., Polsterer, K.L.: Model-coupled autoencoder for time
series visualization. Neurocomputing 192, 139–146 (2016)

100. Hwang, U., Park, J., Jang, H., Yoon, S., Cho, N.I.: PuVAE: a variational autoencoder to purify
adversarial examples (2019). http://arxiv.org/abs/1903.00585

http://arxiv.org/abs/1903.00585

The Encoder-Decoder Framework
and Its Applications

Ahmad Asadi and Reza Safabakhsh

Abstract The neural encoder-decoder framework has advanced the state-of-the-art
in machine translation significantly. Many researchers in recent years have employed
the encoder-decoder based models to solve sophisticated tasks such as image/video
captioning, textual/visual question answering, and text summarization. In this work
we study the baseline encoder-decoder framework in machine translation and take
a brief look at the encoder structures proposed to cope with the difficulties of fea-
ture extraction. Furthermore, an empirical study of solutions to enable decoders to
generate richer fine-grained output sentences is provided. Finally, the attentionmech-
anism which is a technique to cope with long-term dependencies and to improve the
encoder-decoder performance on sophisticated tasks is studied.

Keywords Encoder-decoder framework · Machine translation · Image
captioning · Video caption generation · Question answering · Long-term
dependencies · Attention mechanism

1 Introduction

The solution to a considerable number of the problems that we need to solve falls into
the category of encoder-decoder based methods. Wemay wish to design exceedingly
complex networks to face sophisticated challenges like automatically describing an
arbitrary image or translating a sentence from one language to another. The neural
encoder-decoder framework has recently been exploited to solve a wide variety of
challenges in natural language processing, computer vision, speech processing, and
even interdisciplinary problems. Some examples of problems that can be addressed
by the encoder-decoder based models are machine translation, automatic image and

A. Asadi · R. Safabakhsh (B)
Computer Engineering and Information Technology Department, Amirkabir University
of Technology, Tehran, Iran
e-mail: safa@aut.ac.ir

A. Asadi
e-mail: ahmad.asadi@aut.ac.ir

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_5

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_5&domain=pdf
mailto:safa@aut.ac.ir
mailto:ahmad.asadi@aut.ac.ir
https://doi.org/10.1007/978-3-030-31756-0_5

134 A. Asadi and R. Safabakhsh

video caption generation, textual and visual question answering, and audio to text
conversion.

The encoder part in this model is a neural structure that maps raw inputs to a
feature space and passes the extracted feature vector to the decoder. The decoder is
another neural structure that processes the extracted feature vector to make decisions
or generate appropriate output for the problem.

A wide variety of encoders are proposed to encode different types of inputs. Con-
volutional neural networks (CNNs) are typically used in encoding image and video
inputs. Recurrent neural networks (RNNs) are widely used as encoders where the
input is a sequence of structured data or sentence. In addition, more complex struc-
tures of different neural networks have been used to model complexities in inputs.
Hierarchical CNN-RNN structures are examples of neural combinations which are
widely used to represent temporal dependencies in videos which are used in video
description generation.

Another potential issue with this baseline encoder–decoder approach is that the
encoder has to compress all the necessary information of the input into a fixed-size
tensor. Thismaymake it difficult for the neural network tomodel temporal dependen-
cies at both the input and the output. Attention mechanism is introduced to overcome
the problem of fixed-length feature extraction as an extension to the encoder–decoder
model. The distinguishing feature of this approach from the baseline encoder–de-
coder is that it does not attempt to encode a whole input into a single fixed-size
tensor. Instead, it encodes the input into a sequence of annotation vectors and selects
a combination of these vectors adaptively, while decoding and generating the output
in each step.

Some of the tasks inwhich the encoder-decodermodel is used to solve the problem
are as follows.

1.1 Machine Translation

“Machine translation” (MT) is the task of generating a sentence in a destination
language which has the same meaning as the given sentence from a source language.
Two different approaches exist in machine translation.

The first approach, called “statisticalmachine translation” (SMT), is characterized
by theuseof statisticalmachine learning techniques in order to automatically translate
the sentence from the source language to the destination language. In less than two
decades SMT has come to dominate academic machine translation research [1].

The second approach is called “Neural Machine Translation” (NMT). In this
category, the encoder-decoder framework was first proposed by Cho et al. [2] in
2014. In the model proposed by Cho et al. [2] a neural network is used to extract
features from the input sentence and another neural network is used to generate a
sentence word by word from the destination language using the extracted feature
vector.

The Encoder-Decoder Framework and Its Applications 135

In the neural structures used in NMT, a neural network is trained to map the input
sequence (the input sentence as a sequence of words) to the output sequence. This
kind of learning is known as “Sequence to Sequence Learning”.

Evaluations on the early models of NMT showed that although the generated
translations are correct, the model faces extreme problems when translating long
sentences [3]. The problem of modeling “long-term dependencies” is one of the
most important challenges in the encoder-decoder models. We will drill into that and
take a look at the proposed solutions, later in this chapter.

1.2 Image/Video Captioning

Image captioning and video captioning are the problems of associating a textual
description to a given image or video which holistically describes the objects and
events presented in the input. A wide variety of approaches have been proposed to
solve these problems, including probabilistic graphical models (PGMs) and neural
encoder-decoder based models.

Encoder-decoder based models for image captioning use a CNN as an encoder to
extract a feature vector from the input image and pass it to an RNN as the decoder
to generate the caption. The model architecture in this task is the same as that of
machine translation except that the encoder uses a CNN to encode the image rather
than an RNN.

In video captioning, also called “video description generation”, a similar model
based on the encoder-decoder architecture is employed to generate a caption for the
input video. In video captioning models, the encoder typically consists of CNNs or
combination of CNNs and RNNs to encode the input video and the decoder is the
same as the decoder in machine translation and image captioning.

1.3 Textual/Visual Question Answering

Textual and visual question answering are the problems of generating an answer to
a given question about an article and about an input image, respectively. Models
proposed to solve these problems are supposed to generate a short or long answer,
given an article or an image, and a question about it as the input. The base model
architecture is then similar to that of machine translation, except that the encoder is
required to extract a feature vector for a pair of inputs. The decoder is the same as the
decoder in machine translation and image/video captioning because it is supposed
to generate a sentence describing the meaning of the feature vector generated by the
encoder.

136 A. Asadi and R. Safabakhsh

1.4 Text Summarization

Proposed models for summarizing a text are supposed to generate a textual summary
for the input text. The only constraint on the output is that it is required to describe the
same meaning as the input text and its length should be shorter than that of the input.
The base architecture of these models is the same as the architecture proposed in
machine translation, except that the generated output here is from the same language
as the input.

It can be easily seen that the baseline architecture proposed in machine translation
is also used in other tasks withminor changes. In addition, the decoders of themodels
in different tasks are similar since most of them are used to generate a sentence word
by word to describe the meaning of the input represented by the feature vector. On
the other hand, a wide variety of encoders are used in order to extract appropriate
feature vectors depending on the input types in different tasks.

The next section of this chapter discusses the baseline encoder-decoder model.
The first encoder-decoder basedmodel proposed inmachine translation is introduced
in Sect. 3. Section 4, discusses different types of encoders and their applications in
details and makes a general perspective of the encoder structures in different prob-
lems. Section 5, provides a comprehensive study of the decoder structures, techniques
of making deeper decoders, along with their applications in image/video caption
generation. Section 6, introduces the attention mechanism and its usage in machine
translation, Followed by an empirical study of the attention mechanism in other
problems.

2 Baseline Encoder-Decoder Model

In this section, we introduce the very baseline encoder-decoder model. To give a
clear picture of the idea, the basic structure for solving the machine translation task
is presented in which the model is designed to translate a sentence from a source
language to a destination one.

2.1 Background

A wide range of problems in natural language processing, computer vision, speech
recognition, and some multidisciplinary problems are solved by encoder-decoder
based models. More specifically, some sophisticated problems in which generating
an often-sequential output such as text is desired can be solved by models based on
the encoder-decoder structure.

The main idea behind the framework is that the process of generating output can
be divided into two subprocesses as follows:

The Encoder-Decoder Framework and Its Applications 137

Fig. 1 The basic scheme of the encoder-decoder model

Encoding phase: A given input is first projected into another space by a projection
function, called “encoder”, in order to provide a “good representation” of the input.
The encoder can also be viewed as a feature extractor from the input and the projection
process can be expressed by a feature extraction process.

Decoding phase: After the encoding phase, a “latent vector” is generated for the
given input that well represents its meaning. In the second phase, another projection
function, called “decoder”, is required to map the latent vector to the output space.

Figure 1 demonstrates the basic schema of the encoder-decoder framework. Let
X = {X0,X1, . . . ,Xn} denote the inputs and Y = {Y0,Y1, . . . ,Ym} denote the
outputs of the problem. The decoder extracts a feature vector from the input and
passes it to the decoder. The decoder then generates the output based on the features
extracted by the encoder.

2.2 The Encoder-Decoder Model for Machine Translation

Machine translation is the problem in which the encoder-decoder based models were
originated and proposed first. The basic concepts of these models are shaped and
presented in the machine translation literature. In this section we introduce the basic
encoder-decoder structure proposed for machine translation by Cho et al. [2] to shed
light on the model and its basics.

2.3 Formulation

Both the input and the output of machine translation models are sentences which
can be formulated as a sequence of words. Let X = {X0,X1, . . . ,XLi} denote the
input sentence, where xi is the i th word in it, assuming that the input sentence has Li

138 A. Asadi and R. Safabakhsh

Fig. 2 One-hot vector for
each word in a sample
dictionary. Sentences can
also be modeled using Bag of
Words (BoW) technique in
which the presence of a word
in the sentence is considered
without any information
about the order of words

words. Similarly, the output sentence could be formulated as Y = {y0, y1, . . . , yLo}
in which yi is the i th word in the output sentence assuming that it has Lo words.
Furthermore, all of Xi s and yis are one-hot vectors created from a dictionary of all
words in the input and the output datasets.

A one-hot vector is a vector whose components are all zero except for one of them.
In order to create a one-hot vector for each word, first a dictionary1 of all possible
words in the available datasets is created. Assuming N words in the dictionary, an N-
dimensional zero vector for each word is created and the component with the same
index as the word in the dictionary is set to 1. Figure 2 demonstrates the one-hot
vector for each word in a sample dictionary. Assuming the dictionary D has 5 words
“I”, “cat”, “dog”, “have”, “a” sequentially with the indices 0–4, one-hot vector for
each word is displayed in the figure.

The translation process is divided into the following two subprocesses.

2.3.1 Encoding Phase in MT

An RNN is used to extract a feature vector from the input sentence from the source
language. All of the words in the input sentence are converted to one-hot vectors
and passed to the RNN in the order of their presence in the sentence. The RNN then
updates its hidden state and output vectors according to each word. The iteration
is stopped when the End of Sentence (EOS) token is passed to the RNN. The EOS
token is a token added manually to the end of input sentences to specify the end
point of the sentence. The hidden state of the RNN after the EOS token is then used
as the feature vector of the input sentence. One-hot vectors of the words in the input
sentence are created using the dictionary of words from the source language.

1A dictionary is a list of unique words with unique indices.

The Encoder-Decoder Framework and Its Applications 139

2.3.2 Decoding Phase in MT

Another RNN is used to generate the words of the output sentence in an appropriate
order. The decoder RNN is designed to predict a probability distribution over all
possible words in the dictionary of the source language words at each step. Then
a word is selected with respect to the produced probability distribution as the next
word in the sentence. The iteration is stopped when the EOS token is generated by
the decoder or a predefined number of words are generated.

The structure of the model proposed by Cho et al. [2] is shown in Fig. 3. The
context vector extracted by the encoder is denoted by C, which is the hidden state of
the RNN encoder at the last step.

2.4 Encoders in Machine Translation (Feature Extraction)

An RNN is used as the encoder in the model proposed by Cho et al. [2] Let he denote
the hidden state of the encoder RNN. This state vector is updated at each time step
t according to Eq. (1) in which hte is the hidden state of the encoder at time step t,
fencoder is a nonlinear activation function that can be as simple as an element-wise
logistic sigmoid function and as complex as a Long Short-Term Memory (LSTM),
and Xt is the one-hot vector of the t th word in the input sentence.

hte = fencoder
(
ht−1
e , xt

)
(1)

Fig. 3 An illustration of the first encoder-decoder based model proposed for machine translation

140 A. Asadi and R. Safabakhsh

Assuming that the input sentence has Li words, the encoder RNN should iterate
on each word and update its hidden state vector at each step. The hidden state of the
RNN after the Lith word is then passed to the decoder as the context vector C. So,
the context vector extracted by the encoder can be computed as in Eq. (2).

C = hLi
e (2)

2.5 Decoders in Machine Translation (Language Modeling)

The decoder is supposed to generate the output sentence word by word in a way
that the meaning of the sentence is the same as the meaning of the input sentence
represented by the context vector C. From another point of view, the decoder can
be seen as an RNN that maximizes the likelihood of the translated sentence in the
dataset for the input sentence and its generated context vector as expressed in (3), in
which θ is the set of all trainable weights and the parameters of the model.

Prθ {Y |X} (3)

On the other hand, according to the encoder-decoder structure, the randomvariable
C directly depends on the random variable X, and the random variable Y directly
depends on the random variable C. Figure 4 displays the dependency graph between
these 3 random variables.

Variable C is a “latent variable” since it is not directly observed, but is inferred by
the model (specifically by the encoder). According to the dependencies displayed in
Fig. 4 and considering the fact that the random variable Y directly depends on the
latent variable C, the training procedure of the decoders can be separated from the
training procedure of the encoders. In other words, since C is given while training the
decoders, we can replace the likelihood expressed in (3)with the likelihood expressed
in (4). Furthermore, assuming that each word in the sentence depends only on the
meaning of the previous words in the sentence, the probability of a sentence can be
replaced by the multiplication of the probabilities of its words given the previous
ones.

Prθ {Y |C} = Π Lo
t=0Pr{yt |yt−1, yt−2, . . . , y0,C} (4)

Fig. 4 Directed acyclic graph of dependencies of random variables in the encoder-decoder model

The Encoder-Decoder Framework and Its Applications 141

According to the Eq. (4) the training procedure of the encoder-decoder based
models can be divided into two sub-procedures. First, the encoder is trained to extract
the appropriate feature vector from the input. Then, the decoder is trained to generate
the appropriate output given the feature vector extracted by the trained encoder.
However, using the Eq. (4) allows the encoder and the decoder parts to be trained
independently, they could be trained jointly in and end-to-end manner [2, 4, 5].

Another consequence of using the Eq. (4) is that the decoder is supposed to
generate a probability distribution over each word at each step t given its previously
generated words and the context vector extracted by the encoder. The probability
distribution can be formulated by the RNN according to Eqs. (5) and (6). Let htd
be the hidden state of the decoder at time step t. Let Ot be the decoder output at
time step t (an Lo dimensional vector) which is generated by a nonlinear function g
applied on the decoder’s hidden state and the context vector C. The decoder’s hidden
state is also generated by the nonlinear function fdecoder applied on the previously
generated word, hidden state of the decoder at previous time step and the context
vector according to (7). With applying a Softmax on the output, a vector with the
same size is generated whose sum of components is equal to one and can be treated
as the desired probability distribution.

Ot = g
(
htd , yt−1,C

)
(5)

Pr{yt |yt−1, yt−2, . . . , y0,C} = Sof tMax(Ot) (6)

htd = fdecoder
(
ht−1
d , yt−1,C

)
(7)

At each time step, the probability distribution Pr
{
yt|yt−1, yt−2, . . . , y0,C

}
is gen-

erated by the decoder according to Eq. (6) and the next word is selected with respect
to this probability distribution over the words in the dictionary of the destination
language.

The two components of the proposed model can be jointly trained to minimize
the negative conditional log likelihood expressed in (8) in which N is the number of
samples in the dataset, Yn and Xn are the nth output and input pair in the dataset, θ
is the set of all trainable parameters, and Loss is the loss function to be minimized.

Loss = − 1

N
ΣN

n=0 log Prθ (Yn|Xn) (8)

3 Encoder Structure Varieties

The baseline encoder-decoder architecture proposed by Cho et al. [2] in machine
translation attracted the attention ofmany researchers in different fields. As explained
before, almost all of the variants of the baseline architecture in different tasks share a

142 A. Asadi and R. Safabakhsh

similar decoder, but the structure of encoder varies based on the type of input. In this
section, we will introduce the important structures of encoders to encode different
input types.

3.1 Sentence as Input

The simplest encoder for problems with sentences as inputs is an RNN. The first
proposed encoder in machine translation is an LSTM which takes all words of the
input sentence, processes them and returns the hidden state vector as the context
vector.

Along with the RNNs, CNNs are employed to extract features from the source
sentences in the encoding phase. As an instance, Gehring et al. proposed a convo-
lutional encoder for machine translation in order to create better context vectors by
taking nearby words into consideration using a CNN [6]. In this encoder, a CNN
with a kernel size of k = 3 is used to extract a combination of each three nearby
words’ meaning in the sentence to generate the context vector.

In addition, different RNN cells are used as blocks of the encoder for sentence
inputs. LSTMs [7] are widely used because of their ability to cope with long-term
dependencies and remembering far history in the input sequence [5, 8–10]. GRU [2]
is also used in different proposed models due to its good performance and the fact
that it can be assumed as a light-weighted version of LSTM [2, 11–13].

The models proposed by Cho et al. [2] (RNNenc), Cho et al. [3] (grConv),
Sutskever et al. [5] (Moses), Bahdanau et al. [8] (RNNsearch) are evaluated on
an English to French translation task and the results are reported in Table 1. The
BLEU score [14] is used to evaluate the machine translation models.

RNNenc model (proposed by Cho et al. [2]) uses the proposed RNN structure
for encoding the input sentence while the grConv model (proposed by Cho et al.
[3]) employs a gated recurrent convolutional network as the encoder and the Moses
model (proposed by Krishevski [15]) uses LSTM cells as the encoder. Both of the
first two models use gated recurrent units as the decoder while the third one uses the
LSTM cells as the decoder.

According to the reported results, the Moses model outperforms the previous
ones because of using LSTM cells which can cope with the problem of extracting
long-term dependencies. In addition, results reported by Cho et al. [2] show that

Table 1 BLEU scores
computed on the training and
test sets

Model BLEU score of
training

BLEU score of testing

RNNenc 21.01 23.45

grConv 17.09 18.22

Moses 32.77 35.63

RNNsearch – 36.15

The Encoder-Decoder Framework and Its Applications 143

the performance of the model highly decreases with the increments in length of the
sentences. So, themain problemwith the encoders and the decoders inmachine trans-
lation tasks is extracting long-term dependencies. The model RNNsearch (proposed
by Bahdanau et al. [8]) proposed a novel technique to cope with long-term depen-
dencies called “attention mechanism” which will be introduced later in this paper.
We will also discuss the challenge of “long-term dependencies” later in Sect. 4.1.

3.2 Image as Input

Encoder-Decoder based architectures form a majority of the proposed models to
generate captions for images. In such models, the process of generating captions for
the input image is divided into two steps. The first step is encoding in which a feature
vector extracted from the image is returned as the context vector. The second step
is decoding in which the generated context vector is passed to a decoder to generate
sentences describing the context.

Thebest choice for encoders in suchproblems is aCNN.Almost all of the proposed
models for image captioning based on the encoder-decoder framework use different
types of CNNs as the encoders. Neural encoder-decoder based approaches to image
captioning share the same structure for decoder, while in most of them the encoder
consists of a single CNN. So, the extracted feature vector from the image can be
expressed in Eq. (9) in which X is the input image, CNN(X) is the output of the CNN
network, and C is the context vector passed to the decoder.

C = CNN (X) (9)

A wide variety of CNNs are employed as encoders in the proposed models for
image captioning. Since the pretrained versions of VGGNet [16] and AlexNet [15]
on the ImageNet dataset [17] extract good features from images for different tasks
and are available online, they have been used as encoders in different proposed
image captioning models [18–20]. Furthermore, ResNet [21] has been widely used
because of its good performance as the encoder in such models [22–24]. Google
NIC Inception v3 [25] has also been used in proposed models because of its better
image classification accuracy compared to ResNet [26–29]. Yao et al. [30] integrated
attribute based LSTMs (LSTM-A) with the CNNs and trained them in an end-to-end
manner to boost the encoder.

Figure 5 illustrates the use ofCNNs as the encoder inmodels based on the encoder-
decoder framework for image captioning proposed by Vinyals et al. [28] Similar
architectures are used to generate captions in other studies. As it is shown in the
figure, the encoder part of the model consists of a CNN extracting a feature vector
from the input image. The extracted feature vector is then passed to the decoder to
generate the appropriate caption. The decoder consists of an RNN which generates
the probability of the next word according to (4) at each step.

144 A. Asadi and R. Safabakhsh

Fig. 5 Model architecture based on encoder-decoder framework for image caption generation

Table 2 Performance of the encoder-decoder based models on MSCOCO dataset

Model B-1 B-2 B-3 B-4 METEOR CIDEr ROUGEL

DeepAlign 62.5 45.0 32.1 23.0 19.5 66.0 –

SCA-CNN 71.9 54.8 41.1 31.1 25.0 – –

PG 75.4 59.1 44.5 33.2 25.7 101.3 55.0

NIC – – – 27.7 23.7 85.5 –

VDD 73.7 66.4 57.1 50.5 34.7 125.0 64.9

The models proposed by Karpathy et al. [18] (DeepAlign), Chen et al. [19] (SCA-
CNN), Vinyals et al. [28] (NIC), Liu et al. [29] (PG), and Asadi et al. [31] (VDD) are
evaluated on a popular image captioning dataset proposed by Lin et al. [32] called
MSCOCO. The proposed models are evaluated using the BLEU scores, METEOR
score [33], CIDEr score [34], and ROUGEL score [35] and the results are reported
in Table 2. All of these models used CNNs as the encoder.

3.3 Video as Input

Another sort of problems that the encoder-decoder models play an important role in
solving them are those with videos as the input and describing text as the output,
also called “Video Description Generation” or “Video Captioning”. Since creating a
good representation is critical to the overall performance of video captioningmodels,
a wide variety of encoders are proposed to cope with different difficulties and chal-
lenges of such systems. This section presents some examples of encoders proposed
to deal with the challenges of extracting motion details from the video.

Assume an input video V consists of Li frames. We can present the video as in
Eq. (10), in which vI is a representation of the ith frame in the input video and vLi is
the end of video token (<EOV>). In fact, each vI is the feature vector extracted by a
CNN on the i th frame in the input video.

The Encoder-Decoder Framework and Its Applications 145

Fig. 6 An illustration of the first encoder-decoder based model for video captioning

V = {v0, v1, . . . , vLi } (10)

Since in the baseline encoder-decode model, the encoder should return a “fixed
length” context vector extracted from the input, an aggregation function is required
to aggregate feature vectors from different frames in the video and pass it as the
context vector to the decoder.

Different ideas have been employed to propose a good aggregation for video
captioning. Thefirst end-to-end encoder-decoder based approach in video description
generation proposed by Venugopalan et al. in 2014 [4] used a mean pooling layer
to create the fixed length context vector from the input video. In that model, first
a CNN is applied to each frame of the input video. Then a mean pooling layer is
applied to create an average feature vector over the set of feature vectors extracted
from each frame. The average feature vector is then passed to the decoder to generate
the sentence. A stacked RNN structure is used as the decoder. Figure 6 demonstrates
the architecture of the first encoder–decoder based model for video captioning [4].

Different CNNs have been used to extract feature vectors from the frames of
the input video. For instance, Majd et al. [36] proposed an extended version of the
LSTMcells, called “C2LSTM” inwhich themotion data aswell as the spatial features
and the temporal dependencies are perceived by embedding a correlation modeling
layer into the cell. Majd et al. [37] also proposed a novel network architecture using
previously proposed C2LSTM as the encoder for human action recognition.

3.3.1 3D-CNNs

Extracting good features from the input video is a challenging task that can highly
affect the performance of the proposed model. The extracted context vector from the
input video should well express the detailed motions in the video. In order to create

146 A. Asadi and R. Safabakhsh

Fig. 7 The structure of 3D-CNN

an encoder capable of extracting fine motion features from the video, Yao et al. [38]
proposed a 3D-CNN as the encoder. The structure of this 3D-CNN is illustrated in
Fig. 7.

Actually, the proposed 3D-CNN models the spatio-temporal dependencies in the
input video. The 3D-CNN is used to build a higher-level representation that preserves
the local motion information from short frame sequences in the input video. This is
accomplished by first dividing the input video clip into a 3D spatio-temporal grid
of 16 * 12 * 2 (width * height * timesteps) cuboids. Each cuboid is represented by
concatenating the histogram of oriented gradients (HOG), histogram of oriented flow
(HOF) and motion boundary histogram (MBH) with 33 bins. This transformation
ensures that the local temporal structures and motion features are well extracted. The
generated 3D descriptor then is passed to 3 convolutional layers each followed by
a max-pooling layer and one fully connected layer followed by a softmax layer as
demonstrated in the Fig. 7. The output of the 3D-CNN is then passed to the decoder
to generate an appropriate caption.

The 3D-CNN proposed by Yao et al. [38] is also used along-side the typical 2D-
CNN in other works. Pan et al. [39] proposed a novel encoder-decoder architecture
for video description generation and used the 3D-CNN and the typical 2D-CNN and
applied a mean pooling layer to the set of features extracted by each of the CNNs
and concatenated the output to generate the context vector of the video. Figure 8
illustrates the encoder part of this model.

The Encoder-Decoder Framework and Its Applications 147

Fig. 8 An illustration of the encoder structure which uses a combination of 2D CNNs and 3D
CNNs

148 A. Asadi and R. Safabakhsh

3.3.2 Dense Video Captioning

Another approach to video captioning includes those methods focusing on “Dense
Video Captioning”. Despite themodels that generate a single sentence as the descrip-
tion of the input video, dense video captioning models first detect and localize the
existing events in the input video and then generate a description sentence for each
of the detected events.

Encoders for dense video captioning are supposed to first detect all of the
existing events in the input video. Then for each of the events a quadruple
< tstart , tend , score, h > should be extracted. tstart and tend are the starting and ending
frame numbers of the specified event. score is the confidence score of the encoder for
each of the events. If the score of an event is greater than a threshold, it is reported
as an event and its quadruple is passed to the decoder for sentence generation; other-
wise, it is ignored. Finally, h is the feature vector extracted from the range of frames
between tstart and tend which is used by the decoder as the context vector of the event
to generate a sentence for the event [40].

The task of dense video captioning was proposed by Krishna et al. [41] first in
2017. The proposed encoder by Krishna et al. [41] for dense video captioning is able
to identify events of the input video within a single pass while the proposed decoder
simultaneously generates captions for each event detected and passed by the encoder.

Figure 9 illustrates the structure of encoder proposed by Krishna et al. [41] for
dense video captioning. The proposed encoder is able to extract all events in the input
video using a deep action proposal (DAP) module proposed by [42]. To do this, a
3D-CNN is applied to the input video frames to extract video features. These video
features are passed to the DAP module. This module consists of different LSTMs
that are applied to the video features sequence in different resolutions and are trained
to detect starting and ending points of events. The confidence score of each event is

Fig. 9 An illustration of the encoder model for dense video captioning

The Encoder-Decoder Framework and Its Applications 149

also computed by DAP. The proposed event proposals are then sorted with respect to
their ending points and passed sequentially to the decoder. The feature vector of each
event is also the hidden state of the corresponding RNN in the DAP. The decoder then
generates a sentence for each event using its feature vector as the encoder output.

Li et al. [40] proposed a novel end-to-end encoder-decoder based approach for
dense video captioning which unified the temporal localization of event proposals
and sentence generation. Figure 10 illustrates the structure of the proposed model
[40]. Here, instead of using an extra DAP module, a 12-layer convolutional structure
is designed to extract features for action proposal over the output of the 3D-CNN. The
first 3 layers of the convolutional structure (500D layer and base layers in Fig. 10)
are designed to introduce nonlinearities and decrease the input dimension. The next
9 layers, which are called “Anchor layers”, extract features from different resolutions
to be used for event prediction. The “Prediction Layer” consists of three parallel fully
connected layers to first regress temporal coordinates (tstart and tend) of each event,
then compute the descriptiveness of the event (score) and finally classify the event
vs background. The prediction layer is applied to the output of all anchor layers to
enable the model to detect events from different resolutions. The extracted proposals
are then passed to the proposal ranking module which ranks event proposals with
respect to their ending time. Finally, the events are passed to the decoder for sentence
generation sequentially.

Awide variety ofmodels are proposed to copewith the difficulties of the encoding
phase in dense video captioning. Shen et al. [43] proposed a newCNNcalled “Lexical
FCN” which is trained in a weakly supervised manner to detect events based on the
captions in the dataset. Duan et al. also proposed a novel approach for dense video
captioning based on the similar assumption “each caption describes one temporal
segment, and each temporal segment has one caption” [44].Xu et al. proposed an end-
to-end encoder-decoder based model for dense video captioning which detects and
describes events in the input video jointly and is applicable to dense video captioning
on video streams. Zhou et al. also proposed an end-to-end approach with a masking
network to localize and describe events jointly [45]. Wang et al. proposed a novel
architecture to take both past and future frames into account while localizing the
events in the input video using [46] bidirectional models.

The models proposed by Venugopalan et al. [4] (LSTM-YT), Venugopalan et al.
[47] (S2VT), Yao et al. [38] (3D-CNN), and Pan et al. [39] (LSTM-E) for video
captioning are evaluated on the Youtube2Text dataset proposed by Chen et al. [48],
the results of which are reported in Table 3.

The LSTM-YT and S2VT models use similar encoders. In both of these models,
a CNN is used to extract a feature vector from each frame in the video. The extracted
feature vectors are then passed to a mean-pooling layer in order to generate a unified
feature vector to represent the input video. In 3D-CNN model, a 3D-CNN is used
along with a 2D-CNN to extract and represent information about the movements in
the input video. The extracted feature vector in this model contains spatio-temporal
information extracted from the video. The LSTM-E model used LSTM cells as the
encoder. As a result, the extracted feature vector represents the temporal information
of the input video.

150 A. Asadi and R. Safabakhsh

Fig. 10 An illustration of the encoder-decoder structure for dense video captioning

The Encoder-Decoder Framework and Its Applications 151

Table 3 Performance of different encoder-decoder based models for video captioning

Model B-1 B-2 B-3 B-4 METEOR CIDEr

LSTM-YT – – – 33.29 29.7 –

S2VT – – – – 29.8 –

3D-CNN – – – 41.92 29.6 51.67

LSTM-E 78.8 66.0 55.4 45.3 31.0 –

The main challenging problem in the encoders of the encoder-decoder based
models in video description generation, is to extract a combination of the spatial and
the temporal information of the input video.

4 Decoder Structure Varieties

In the encoder-decoder based models, decoders generate a sequential output for
the given input. The generated output might be in the form of a descriptive text
(the desired output in machine translation, image/video captioning, textual/visual
question answering, and speech to text conversion), or a speech signal (the desired
output in the text to speech challenge). The output is a numerical sequence that
is passed to the last layer in order to generate an appropriate output for the given
input. Therefore, the main structures of the decoders are similar in different tasks.
This section, introduces different techniques proposed to make better decoders with
better generated captions.

4.1 Long-Term Dependencies

One of the basic problems with RNNs is the problem of “long-term dependencies”.
Indeed, when the length of the input or the length of the desired output is too large, the
gradients in these networks should propagate over many stages. When the gradient
is propagated over a large number of stages, it tends to either vanish or explode.

In addition, the gradients in each backpropagation step are multiplied by small
coefficients or small learning rates. Thus, the gradient in the early stages will be
close to zero and might make no significant change in the weights of the early stage
layers [49].

In this section wewill discuss the approaches proposed to cope with the long-term
dependency challenge in the decoders.

152 A. Asadi and R. Safabakhsh

4.2 LSTMs

LSTMs have achieved excellent results on a variety of sequence modeling tasks
thanks to their superior ability to preserve sequence information over time. The
combination of the “memory cell” and the “forget gate” in the structure of LSTM
improves its ability to model sequence information by training to forget the unnec-
essary information (using the forget gate) and keep the necessary information in the
memory cell. Cho et al. [2], Bahdanau et al. [8], Luong et al. [50], Wu et al. [51],
Johnson et al. [52] and Luong et al. [53] used LSTMs as both the encoder and decoder
part of their models proposed for machine translation.

4.3 Stacked RNNs

As mentioned earlier, multi-staged decoders are hard to train due to the vanishing
gradient problem. Thus, most of the proposed encoder-decoder based models use a
single layer RNN as the decoder which results in difficulties to generate rich fine-
grained sentences. Stacking multiple RNNs on top of each other is another way to
enable decoders to generate sentences describing more details of the input image.

Donahue et al. [54] proposed an encoder-decoder based approach to image cap-
tioning which uses a stacked structure of LSTMs as the decoder in order to describe
more details of the input image. In this method an LSTM is used on top of another
one in a way that the first layer LSTM takes image features and the previously gen-
erated word embedding along with its previous hidden state vector as the input and
generates a coarse low-level representation of the output sentence. In the next step,
the hidden state of the low-level LSTM is passed to the next LSTM as the input along
with its previous hidden state to generate the fine high-level representation of the out-
put. A softmax layer is then applied to the generated high-level representation of the
output to generate the probability distribution of the next word in the sentence. Gu
et al. [55] also used encoder-decoder based model with a two-layer stacked LSTM
as the decoder in order to enable the proposed model to generate better descriptions.

The idea of employing a stacked structure of RNNs as the decoder is also used in
models proposed for video description generation. Venugopalan et al. [4] proposed
the first decoder in neural encoder-decoder based approaches for video description
generation with a simple stacked structure. Figure 11 demonstrates the architecture
of a sample stacked decoder. Blocks tagged with “C” display the input at each step.
The red line illustrates the shortest path from the first step to the output in the model.
Since the length of the shortest path from the first step to the output correlates with
the testing and the training time of the model, decreasing this length decreases the
testing and the training time of the model.

Along with the methods using stacked RNNs as decoders, a category of models is
proposed which follow a hierarchical fashion to arrange RNNs in decoders in order
to enable the models to generate fine-grained output sequences.

The Encoder-Decoder Framework and Its Applications 153

Fig. 11 Stacked structure of RNNs

In addition, hierarchical RNN structures are also used to enable encoders in prob-
lemswith a sequential input to exploit and encodemore detailed information from the
input. Pan et al. [56] proposed an encoder-decoder based model for video description
generation with a hierarchical encoder structure. In their model, two layers of differ-
ent LSTMs are used. The first layer LSTM is applied to all sequence steps in order
to exploit low-level features and the second layer LSTM is applied on the output of
equally sized subsets of the input sequence steps to exploit the high-level features.
Figure 12 demonstrates this architecture. The illustrated red line, shows the shortest
path from the first step to the output. Comparing structures displayed in Figs. 11
and 12 shows that the shortest path from the first step to the output in hierarchical

Fig. 12 Hierarchical structure of RNNs

154 A. Asadi and R. Safabakhsh

Table 4 Performance of different encoder-decoder based models with stacked decoder structure
in video captioning

Model B-1 B-2 B-3 B-4 METEOR CIDEr

LSTM-YT – – – 33.29 29.7 –

HRNE 79.2 66.3 55.1 43.8 33.1 –

h-RNN 81.5 70.4 60.4 49.9 32.6 65.8

models is much smaller than that in stacked models. Therefore, the efficiency of the
hierarchical model is much higher than that of the stacked model.

More complex hierarchical structures are also proposed in the literature for differ-
ent intents. Yu et al. [57] proposed a model with a hierarchical structure to generate
a set of sentences arranged in a single paragraph as a description for the input video.
The first layer in this model is a simple decoder to generate single sentences and the
second layer is a “paragraph controller”. The paragraph controller is another RNN
which generates a feature vector given the last hidden state of the first layer RNN
denoting the meaning of the next sentence to be generated. The first layer RNN then
takes the feature vector generated by the second layer and concatenates it with other
inputs to control the meaning of the next sentence.

The models proposed by Venugopalan et al. [4] (LSTM-YT), Pan et al. [56]
(HRNE), andYu et al. [57] (h-RNN) are evaluated onYoutube2Text dataset proposed
by Chen et al. [48]. Table 4, reports the evaluation results on this dataset.

The LSTM-YT model, uses a simple 2-layer stacked decoder to generate appro-
priate caption for the input video. The HRNE model, uses a hierarchical decoder
structure to reduce the length of the shortest path from the input to the output of the
decoder. The h-RNE model uses two-steps, one of which generates a sentence and
the other one controls the paragraph context.

According to the results reported in Table 4, theMETEOR score of the HRNE and
the h-RNNmodels are similar, while they are better than that of the LSTM-YTmodel.
The results indicate that hierarchical decoder structures are better in extracting the
long-term dependencies from the input than the stacked decoders.

4.4 Vanishing Gradients in Stacked Decoders

Even though increasing the depth of the stacked decoder structure adds more nonlin-
earities to the model and empowers it to generate fine-grained sentences, the number
of layers in the stacked structures is strictly restricted. Most of stacked decoder
structures use at most 2-layers of RNNs on top of each other [54, 56, 57].

Indeed, the most important issue restricting the number of layers in stacked struc-
tures is the problem of vanishing gradients in deeper decoders. The backpropagated
gradients vanish as a result of two facts. First, the gradients in such architectures are
multiplied by small multipliers and small learning rates at each stage. Second, since

The Encoder-Decoder Framework and Its Applications 155

the loss function of the proposed decoders is based on the likelihood of the next word,
decoders are supposed to predict a probability distribution over all the words in the
dictionary. It means the decoder’s output size is equal to the size of word dictionary.
Furthermore, the sum of all components in the output layer is supposed to be equal
to 1, which means the gradients computed at the last layer are numerically small.
Summing up, the gradients vanish in stacked decoders since the computed gradients
at the last layer are small and they are multiplied by small multipliers at each step.

Asadi et al. [31] proposed a novel approach to train the stacked decoders in a
way that the gradients of the last layer are large enough to make significant changes
in the weights of the first layers. The main idea is to use a word-embedding vector
instead of a one-hot vector representation as the decoder desired output. As a result,
the optimization problem changes from predicting the conditional probability distri-
bution of the next word to a word-embedding regression. In this way, the limitations
of the value of the computed gradients at the last step are resolved. In addition, the
loss function of the decoder is changed from the cross-entropy to MSE of the word
embedding of the next word.

To shed light over the issue, we recall the cost function Loss(Yi , Di) of the
baseline encoder-decoder model proposed for machine translation by Cho et al. [2].
Let Yi be the probability distribution predicted by the decoder for the input sentence
Xi , and let Di be the desired output for the given input. The proposed loss function
is based on the cross-entropy loss function which is typically used for classification.
The optimization problem (11) can be used to train the model. This optimization
problem, determines the trainable parameters of the model θ in a way that while
the model generates a probability distribution Yi for the input Xi , the classification
error of the model over the dataset is minimized. Note that in this problem, λ is a
regularization parameter controlling the size of the trainable parameters of the model
and Nx is the number of records in the dataset.

minimize
∑Nx

i=0
Loss(Yi , Di) + λ|θ |2
subject to : |Yi |2 = 1 (11)

One way to create higher gradients at the last layer of the decoder is to remove
the Softmax layer from the top of the decoder. If this layer is removed, the generated
output of the model Yi no more is in the form of a probability distribution. Therefore,
the optimization model could not be formulated as shown in (11).

Asadi et al. [31] proposed a model to cope with this problem by changing the
optimization problem (11). In the proposed model, the task of generating sentences
in a word by word manner is treated as a regression rather than a classification task.
Asadi et al. [31] augmented themodelwith an embedding function E which generates
an embedding vector for each word in the dictionary and returns the most similar
word in the dictionary given an embedding vector. Using this embedding function,
the optimization problem (11) could be changed from predicting the probability
distribution of the next words to regressing the embedding vector of the next word
in the sentence. So, the optimization problem is changed to (12).

156 A. Asadi and R. Safabakhsh

Table 5 Performance of different techniques to cope with the problem of vanishing gradients in
encoder-decoder based models for image captioning

Model B-1 B-2 B-3 B-4 METEOR CIDEr ROUGEL

VDD 73.7 66.4 57.1 50.5 125.0 34.7 64.9

StackedCap 78.6 62.5 47.9 36.1 120.4 27.4 –

SOT 74.3 57.9 44.3 33.8 104.4 33.8 54.9

WeightedTrain 76.8 60.5 45.8 34.2 105.5 26.1 55.5

minimize
1

Nx
Σ

Nx
i=0(E(Yi) − E(Di))

2 + λ|θ |2 (12)

As Eq. (12) shows, the constraint on the size of the output is omitted because the
model output is no longer in the form of a probability distribution. In addition, as the
problem is changed from a classification to a regression task, the cross-entropy loss
is replaced with the mean squared error. The model proposed by Asadi et al. [31]
is applied on the decoder of an encoder-decoder model for image captioning, and it
outperforms the state-of-the-art models in the field.

The models proposed by Asadi et al. [31] (VDD), Gu et al. [55] (StackedCap),
Chen et al. [58] (SOT), and Ding et al. [59] (WeightedTrain) are evaluated on the
MSCOCO dataset and the results are reported in Table 5.

The StackedCap model used a stacked structure that generates captions for the
image in a coarse to fine manner. In this model, the decoder consists of multiple
LSTMs, each of which operating on the output of the previous one. This decoder
generates increasingly refined captions for the input image. The SOT model used
an attribute-based attention mechanism to cope with the long-term dependencies.
Finally, the WeightedTrain model added some reference knowledge to help the
decoder to generate more descriptive captions. In this model, each word is assigned
a weight according to the correlation between that word and the input image. In this
way, the decoder can attend more to the important words while generating captions.

According to the results reported in Table 5, treating the sentence generation
as a regression problem rather than a classification one empowers the decoders to
generate better longer sentences. The VDDmodel outperforms other state-of-the-art
models with respect to the CIDEr, METEOR, ROUGEL, and BLEU scores except
for BLEU-1.

4.5 Reinforcement Learning

One of the problems of training the decoders using the loglikelihood model is that
the performance of the model is highly different on the training and testing sets. This
occurs since the optimization function for training is different from the evaluation
metrics used in testing. Recently, reinforcement learning has been used to decrease

The Encoder-Decoder Framework and Its Applications 157

the gap between training and testing performance of the proposed models. In other
words, the main problem with the loglikelihood objective is that it does not reflect
the task reward function as measured by the BLEU score in translation.

Wu et al. [51] proposed the first decoder trained by reinforcement learning for
machine translation. After that, other researchers used reinforcement learning to
train decoders in other tasks. Wang et al. [60] proposed the first decoder trained with
reinforcement learning, taking CIDEr [34] score as the reward in video captioning.
Li et al. [40] also trained a decoder in a reinforcement learning fashion using the
METEOR [33] score as the reward to generate caption for the input videos.

Figure 13 illustrates the structure of the model proposed by Wang et al. [60]
The decoder in this work consists of three different modules, namely a manager, a
worker, and an internal critic. These three modules are trained using a reinforcement
learning method. The manager operates at a lower temporal resolution and emits a
goal when needed for the worker, and the worker generates a word for each time step
by following the goal proposed by the manager. The internal critic determines if the
worker has accomplished the goal and sends a binary segment signal to the manager
to help it update goals.

Figure 14 illustrates the unrolled decoder proposed by Wang et al. [60] The man-
ager takes the context vector cMt at time step t and the feature vector of sentence
generated at previous time step hWt−1 as the input. An LSTM is used to model the

Fig. 13 An illustration of the encoder-decoder based model in which the decoder is trained using
reinforcement learning

158 A. Asadi and R. Safabakhsh

Fig. 14 An illustration of the unrolled decoder

extracted goal sequences. The LSTM takes the input and updates its hidden state
hMt . The hidden state of the LSTM is then used to generate the next goal using the
nonlinear function uM according to (13).

hM
t = LST MM(hM

t−1, [cMt , hW
t−1]) (13)

gt = uM(hM
t) (14)

LST MM denotes the LSTM function used in manager, uM is the function pro-
jecting hidden states to the semantic goal, hMt−1 is the hidden state of the manager
LSTM at the previous time step, and gt is the vector of semantic goal generated at
time step t.

The worker then receives the generated goal gt , takes the concatenation of
[cWt , gt , αt−1] as the input, and outputs the probabilities πt over all actions αt ∈ V ,
where each action is a generated word according to Eqs. (15)–(17).

hW
t = LST MW (hW

t−1, [cWt , gt , αt−1]) (15)

xt = uW (hW
t) (16)

πt = Sof tMax(xt) (17)

The internal critic is used to provide a good coordination between the manager
and the worker. Internal critic is indeed a classifier to determine when the worker

The Encoder-Decoder Framework and Its Applications 159

is done with generating an appropriate phrase for a given goal. When the worker
is done, the internal critic sends an activation signal to the manager to generate a
new goal. Let zt be the binary signal of the internal critic, the probability Pr(zt) is
computed according to Eqs. (18) and (19).

hI
t = LST MI ([hI

t−1, αt]) (18)

Pr(zt) = sigmoid
(
Wzh

I
t + bz

)
(19)

The objective of the worker is to maximize the discounted return in which θW is
the set of trainable parameters of the worker, γ is the discount rate, and rt+k is the
reward at step t + k. Therefore, the loss function of the decoder can be written as
(21).

Rt = Σ∞
k=0γ

krt+k (20)

L(θW) = −Eαt∼πθW
[R(αt)] (21)

The gradient of the non-differentiable, reward-based loss function can be derived
as:

∇θW L(θW) = −Eαt∼πθW
[R(αt∇θW logπθW (αt))] (22)

Typically, the expectation of the loss function if estimated with a single sample,
so the expectation term can be omitted. In addition, the reward can be subtracted
with a baseline btW in order to generalize the policy gradient.

∇θW L(θW) ≈ −(R
(
αt − bWt

)∇θW logπθW (αt) (23)

The manager is supposed to be trained in a way that it can compute goals to
generate sentenceswith better BLEU scores. The action of the decoder is produced by
theworker. So, theworker is assumed to be fully trained and used as a black boxwhen
training themanager.More specifically, themanager outputs a goal gt at step t and the
worker then runs c steps to generate the expected segment et,c = αtαt+1αt+2 · · · αt+c

using the goal. Then the environment responds with a new state st+c and reward
r(et,c). Following a similar math, the final gradients for training the manager can be
derived as in (24).

∇θM L(θM) = −(
R
(
et,c

) − bM
t

)[
Σ t+c−1

i=t ∇gt logπ(αi)
]∇θMμθM (st) (24)

In which μθM(st) is a noisy version of the generated goal and is used in order to
empower exploration in the training of the model. Furthermore, rewards are defined
as (25) and (26).

160 A. Asadi and R. Safabakhsh

R(at) = Σ∞
k=0γ

k
[
C I DEr(sent + αt+k) − C I DEr(sent)

]
(25)

R(et) = Σ∞
n=0γ

n[C I DEr(sent + et+n) − C I DEr(sent)] (26)

Other metrics such as BLEU score can be used instead of CIDEr.

5 Attention Mechanism

Models based on the encoder-decoder framework encode input to a “fixed length
vector”. The decoder in these models generates the output based on the information
represented in the fixed length encoder output. Each element of the output may be
more strongly related to a specific part of the input. In these cases, more detailed
information about that specific part of the input is required, and the extra information
from the other parts of the input could deceive the model.

Attention mechanism, first introduced by Bahdanau et al. [8] in machine transla-
tion, is a mechanism that allows the encoder-decoder models to paymore attention to
a specific part of the input, while generating the output at each step. Furthermore, the
mechanism enables decoders to cope with the long-term dependencies and generate
more fine-detailed sentences and outputs.

In this section, first the basic idea of the attentionmechanism proposed inmachine
translation is described. Then, the use of this mechanism in some encoder-decoder
architectures proposed in various applications is discussed.

5.1 Basic Mechanism

Bahdanau et al. [8] proposed the first encoder-decoder based model equipped with
the attention mechanism in order to produce better translations. The encoder and the
decoder parts of the proposedmodel are changed. The encoder ismodified to generate
a sequence of feature vectors called “annotation vectors” and an extra layer called
“attention layer” is added in between the encoder and the decoder. The attention
layer receives the annotation vectors generated by the encoder and creates a fixed
length context vector at each step and passes it to the decoder in order to generate
the probability of the next word in the sentence.

Based on these changes, the target probability distribution of the decoder can be
expressed as in (27). It denotes the probability of the next word yt at time step t, given
all of the previously generated words and the context vector generated to predict the
t th word. The decoder computes this probability at each step.

Pr(yt |yt−1, . . . , y0,Ct) (27)

The Encoder-Decoder Framework and Its Applications 161

Let L = {l0, l1, . . . , lNi } be the set of generated annotation vectors by the
encoder, and Ni be the number of generated annotations, the context vector Ct is
then computed at each step using the Eq. (28). The coefficients αk in (28) are called
the “attention weights”.

Ct = Σ
Ni
k=0α

t
klk (28)

The key point in generating the context vector at each step using the attention
mechanism is to compute the attention weights at each step. Researchers have pro-
posed different ways to compute the attention weights. One of the most used atten-
tion mechanisms, which is called “Soft Attention”, is proposed by Xu et al. [10]. The
attention weights in soft attention are computed using Eqs. (29) and (30).

αt
k = exp

(
etk

)

Σ
Ni
j=0 exp

(
etj

) (29)

etk = f (ht−1, l j) (30)

Equation (30) is an alignment model which scores how well the output at
step t depends on the input section related to the annotation vector lj. The func-
tion f in (30) measures the alignment between the output and the input. A simple
candidate for implementing function f is an MLP which can be modeled as:

f (ht−1, l j) = W2 tanh(Whht−1 + Wll j + b1) + b2 (31)

In which W2, Wh, and Wl are weight matrices and b1 and b2 are biases. All of
these parameters can be trained jointly with other trainable model parameters.

Another version of the attention mechanism, called “Hard Attention”, is also
introduced by Xu et al. [10] in which at each step one of the attention weights is
equal to 1 and the rest are equal to zero.

5.2 Extensions

Vaswani et al. [61] showed that the attention mechanism not only can be used instead
of convolutional and recurrent layers in the network architecture, but also outper-
forms their functionality and decreases the computation complexity of the network
training. Vaswani et al. [61] proposed a novel neural architecture in which all of
the convolutional and recurrent layers of the networks are substituted with attention
layers.

Attention mechanism is also used in other tasks. You et al. [62] proposed a seman-
tic attention in image captioning. Lu et al. [22] also proposed an adaptive version of

162 A. Asadi and R. Safabakhsh

the attention mechanism in image captioning. Gao et al. [63] proposed an encoder-
decoder basedmodel using the attentionmechanism and introduced a novel approach
to train the attention weights to decrease the semantic gap of the generated caption.

Since the attention mechanism enables the models to focus more on a part of
the input while generating the output, it can be used as a selector between multiple
information sources. Wu et al. [64] proposed a novel encoder-decoder based model
for video captioning which is used temporal features, audio features, motion features
and semantic label features. The proposed attention-based hierarchical multi-modal
fusion model (HATT) exploits the complementariness of multi-modal features. The
model consists of three different attention layers: (1) low-level attention which deals
with temporal, motion and audio features, (2) high-level attention which deals with
semantic labels, and (3) sequential attention which aggregates the information from
the other two layers of attention.

In the proposedmodel two different types of the attentionmechanism is proposed:

1. Intra-modality attention: the soft-attention applied on a feature set V containing
features from a single modality.

2. Inter-modality attention: the soft-attention applied on a feature set V containing
features from multiple modalities.

Figure 15 displays the structure of different attention layers proposed byWu et al.
[64]. In the low-level attention layer, an intra-modality attention is applied on the
temporal features first to generate the context vector Ctem

t . Then an inter-modality
attention selects between the temporal and the motion features generating Cmt

t . In
parallel, an intra-attention modality is applied on the audio features, which generates
the context vector Caud

t . Finally, the average vector of theCmt
t and theCaud

t is computed
and passed on. In the high-level attention layer, an intra-modality attention is used
to generate the context vector of the semantic labels. Ultimately, in the sequential
attention layer, an intra-modality attention is used to aggregate the context vectors
from the low-level and the high-level attention layers.

Fig. 15 Different attention layers

The Encoder-Decoder Framework and Its Applications 163

The proposed model by Wu et al. [64] employed the attention mechanism in
a hierarchical structure to exploit both the long-term and the multi-modal feature
dependencies from the input to generate fine-grained captions.

6 Future Work

The encoder-decoder based models are best fitted to the sophisticated tasks as an
end-to-end solution and many different adaptations on them are accomplished. This
provide a good starting point for discussion and further research.

Further studies on the encoder-decoder based models should investigate the fol-
lowing issues:

• Reinforcement learning
One interesting way to enhance the performance of the encoder-decoder based
models is to use reinforcement learning to train them.

• Long term dependencies
A wide variety of ideas are proposed to cope with the long-term dependencies in
the inputs. Current models are facing major problems to represent long sequences.
We pointed out some of the ways to resolve this problem such as using LSTM
cells, using the stacked structures for the decoders, treating the decoding phase
as a regression problem rather than a classification one, and using the attention
mechanism. Each of the introduced techniques can be improved and also new
techniques can be added to this list.

• Applications
As mentioned earlier, the encoder-decoder based models are widely used as an
end-to-end solution for the sophisticated tasks. This is an interesting topic for
the future work to employ the encoder-decoder based models for solving new
problems.

7 Conclusion

In this chapter, we presented the baseline encoder-decoder model first proposed in
machine translation and then extended to other applications. The main idea in the
encoder-decoder framework is to split the process of generating a textual output
describing the input into two subprocesses. A feature vector is first extracted by an
encoder from the input. Then a decoder is used to generate the output step by step
using the feature vector extracted by the encoder.

The structure of the encoder varies based on the input type.Whenever the input is a
text or a sequence, an RNN is used as the encoder.When the input is an image, CNNs
can be used to encode the input image. If that the input is a video a combination of

164 A. Asadi and R. Safabakhsh

CNNs and RNNs is used to first extract features from all of the input frames and then
model temporal dependencies between different frames. 3D-CNNs are also proposed
to extract motion data from the input. More complex models to detect and localize
events in the input video for dense video captioning are also discussed.

Extracting long-term dependencies and generating rich fine-grained sentences are
themain problems of decoders in the encoder-decoder basedmodels. LSTM cells are
the simplest models that can cope with the problem of long-term dependencies, and
are used in the proposed architectures for different tasks. Using stacked structures of
RNNs is another approach to make deeper decoders. This allows the models to cope
with the long-term dependency challenge and generate more detailed sentences. One
of themost important problems of the stacked decoder structures is the problem of the
vanishing gradients which can be solved by modifying the optimization problem of
the decoder. Another approach to cope with the problem of long-term dependencies
is using the attention mechanism, which is a technique to focus more on different
portions of the input, while generating outputs at each step.

References

1. Lopez, A.: Statistical machine translation. ACM Comput. Surv. 40(3), 8 (2008)
2. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical

machine translation (2014). http://arxiv.org/abs/1406.1078
3. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine

translation: encoder-decoder approaches (2014). http://arxiv.org/abs/1409.1259
4. Venugopalan, S., Xu, H., Donahue, J., Rohrbach, M., Mooney, R., Saenko, K.: Translating

videos to natural language using deep recurrent neural networks (2014). http://arxiv.org/abs/
1412.4729

5. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In:
Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

6. Gehring, J., Auli, M., Grangier, D., Dauphin, Y.N.: A convolutional encoder model for neural
machine translation (2016). http://arxiv.org/abs/1611.02344

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

8. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and
translate (2014). http://arxiv.org/abs/1409.0473

9. Luong,M.-T.,Manning,C.D.: Stanford neuralmachine translation systems for spoken language
domains. In: Proceedings of the International Workshop on Spoken Language Translation,
pp. 76–79 (2015)

10. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In:
International Conference on Machine Learning, pp. 2048–2057 (2015)

11. Mi,H., Sankaran,B.,Wang,Z., Ittycheriah,A.:Coverage embeddingmodels for neuralmachine
translation (2016). http://arxiv.org/abs/1605.03148

12. He, D., et al.: Dual learning for machine translation. In: Advances in Neural Information
Processing Systems, pp. 820–828 (2016)

13. Tu, Z., Liu, Y., Lu, Z., Liu, X., Li, H.: Context gates for neural machine translation. Trans.
Assoc. Comput. Linguist. 5, 87–99 (2017)

14. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: a method for automatic evaluation of
machine translation. In: Proceedings of the 40th Annual Meeting on Association for Compu-
tational Linguistics, pp. 311–318 (2002)

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1412.4729
http://arxiv.org/abs/1611.02344
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1605.03148

The Encoder-Decoder Framework and Its Applications 165

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition (2014). http://arxiv.org/abs/1409.1556

17. Deng, J., Dong,W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical
image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2009, pp. 248–255 (2009)

18. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descrip-
tions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3128–3137 (2015)

19. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for
image captioning. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 6298–6306 (2017)

20. Pedersoli, M., Lucas, T., Schmid, C., Verbeek, J.: Areas of attention for image captioning. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 1242–1250 (2017)

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

22. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: adaptive attention via a visual
sentinel for image captioning. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3242–3250 (2017)

23. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence training for
image captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7008–7024 (2017)

24. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and VQA (2017).
http://arxiv.org/abs/1707.07998

25. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception archi-
tecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2818–2826 (2016)

26. Zhang, L., et al.: Actor-critic sequence training for image captioning (2017). http://arxiv.org/
abs/1706.09601

27. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift (2015). http://arxiv.org/abs/1502.03167

28. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption gener-
ator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3156–3164 (2015)

29. Liu, S., Zhu, Z., Ye, N., Guadarrama, S., Murphy, K.: Improved image captioning via policy
gradient optimization of spider. In: 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 873–881 (2017)

30. Yao, T., Pan, Y., Li, Y., Qiu, Z., Mei, T.: Boosting image captioning with attributes. In: 2017
IEEE International Conference on Computer Vision (ICCV), pp. 4904–4912 (2017)

31. Asadi, A., Safabakhsh, R.: A deep decoder structure based onword embedding regression for an
encoder-decoder based model for image captioning. In: Submitted to Cognitive Computation
(2019)

32. Lin, T.-Y., et al.: Microsoft COCO: Common Objects in Context. In: European Conference on
Computer Vision, pp. 740–755 (2014)

33. Banerjee, S., Lavie, A.:METEOR: an automaticmetric forMT evaluationwith improved corre-
lation with human judgments. In: Proceedings of the ACLWorkshop on Intrinsic and Extrinsic
Evaluation Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)

34. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: Cider: consensus-based image description
evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 4566–4575 (2015)

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1707.07998
http://arxiv.org/abs/1706.09601
http://arxiv.org/abs/1502.03167

166 A. Asadi and R. Safabakhsh

35. Lin, C.Y.: Rouge: a package for automatic evaluation of summaries. In: Proceedings of the
Workshop on Text Summarization Branches Out (WAS 2004) (2004)

36. Majd, M., Safabakhsh, R.: Correlational convolutional LSTM for human action recognition.
Neurocomputing (2019)

37. Majd, M., Safabakhsh, R.: A motion-aware ConvLSTM network for action recognition. Appl.
Intell., 1–7 (2019)

38. Yao, L., et al.: Describing videos by exploiting temporal structure. In: Proceedings of the IEEE
International Conference on Computer Vision, pp. 4507–4515 (2015)

39. Pan, Y., Mei, T., Yao, T., Li, H., Rui, Y.: Jointly modeling embedding and translation to bridge
video and language. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4594–4602 (2016)

40. Li, Y., Yao, T., Pan, Y., Chao, H., Mei, T.: Jointly localizing and describing events for dense
video captioning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7492–7500 (2018)

41. Krishna, R., Hata, K., Ren, F., Fei-Fei, L., CarlosNiebles, J.: Dense-captioning events in videos.
In: Proceedings of the IEEE International Conference on Computer Vision, pp. 706–715 (2017)

42. Escorcia, V., Heilbron, F.C., Niebles, J.C., Ghanem, B.: Daps: deep action proposals for action
understanding. In: European Conference on Computer Vision, pp. 768–784 (2016)

43. Shen, Z., et al.: Weakly supervised dense video captioning. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5159–5167 (2017)

44. Duan, X., Huang, W., Gan, C., Wang, J., Zhu, W., Huang, J.: Weakly supervised dense event
captioning in videos. In: Advances in Neural Information Processing Systems, pp. 3063–3073
(2018)

45. Zhou, L., Zhou, Y., Corso, J.J., Socher, R., Xiong, C.: End-to-end dense video captioning with
masked transformer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8739–8748 (2018)

46. Wang, J., Jiang, W., Ma, L., Liu, W., Xu, Y.: Bidirectional attentive fusion with context gating
for dense video captioning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 7190–7198 (2018)

47. Venugopalan, S., Rohrbach, M., Donahue, J., Mooney, R., Darrell, T., Saenko, K.: Sequence
to sequence-video to text. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 4534–4542 (2015)

48. Chen, D.L., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: Pro-
ceedings of the 49th AnnualMeeting of the Association for Computational Linguistics: Human
Language Technologies (HLT’11) (2011)

49. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1, p. 334. MIT press
Cambridge (2016)

50. Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural
machine translation (2015). http://arxiv.org/abs/1508.04025

51. Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human
and machine translation (2016). http://arxiv.org/abs/1609.08144

52. Johnson, M., et al.: Google’s multilingual neural machine translation system: enabling zero-
shot translation. Trans. Assoc. Comput. Linguist. 5, 339–351 (2017)

53. Luong, M.-T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare word
problem in neural machine translation (2014). http://arxiv.org/abs/1410.8206

54. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and
description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2625–2634 (2015)

55. Gu, J., Cai, J., Wang, G., Chens, T.: Stack-captioning: coarse-to-fine learning for image cap-
tioning. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

56. Pan, P., Xu, Z., Yang, Y., Wu, F., Zhuang, Y.: Hierarchical recurrent neural encoder for video
representation with application to captioning. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1029–1038 (2016)

http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1410.8206

The Encoder-Decoder Framework and Its Applications 167

57. Yu, H., Wang, J., Huang, Z., Yang, Y., Xu, W.: Video paragraph captioning using hierarchical
recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4584–4593 (2016)

58. Chen, H., Ding, G., Lin, Z., Zhao, S., Han, J.: Show, observe and tell: attribute-driven attention
model for image captioning. In: IJCAI International Joint Conference on Artificial Intelligence
(2018)

59. Ding, G., Chen, M., Zhao, S., Chen, H., Han, J., Liu, Q.: Neural image caption generation with
weighted training and reference. Cogn. Comput. (2018)

60. Wang, X., Chen, W., Wu, J., Wang, Y.-F., Yang Wang, W.: Video captioning via hierarchical
reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4213–4222 (2018)

61. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing
Systems, pp. 5998–6008 (2017)

62. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: Pro-
ceedings of the IEEEConference on Computer Vision and Pattern Recognition, pp. 4651–4659
(2016)

63. Gao, L., Guo, Z., Zhang, H., Xu, X., Shen, H.T.: Video captioning with attention-based lstm
and semantic consistency. IEEE Trans. Multimed. 19(9), 2045–2055 (2017)

64. Wu,C.,Wei,Y.,Chu,X.,Weichen, S., Su, F.,Wang,L.:Hierarchical attention-basedmultimodal
fusion for video captioning. Neurocomputing 315, 362–370 (2018)

Deep Learning for Learning Graph
Representations

Wenwu Zhu, Xin Wang and Peng Cui

Abstract Mining graph data has become a popular research topic in computer
science and has been widely studied in both academia and industry given the increas-
ing amount of network data in the recent years. However, the huge amount of network
data has posed great challenges for efficient analysis. This motivates the advent of
graph representation which maps the graph into a low-dimension vector space, keep-
ing original graph structure and supporting graph inference. The investigation on
efficient representation of a graph has profound theoretical significance and impor-
tant realistic meaning, we therefore introduce some basic ideas in graph representa-
tion/network embedding as well as some representative models in this chapter.

Keywords Deep learning · Graph representation · Network embedding

1 Introduction

Many real-world systems, such as Facebook/Twitter social systems, DBLP author-
citation systems and roadmap transportation systems etc., can be formulated in the
form of graphs or networks, making analyzing these systems equivalent to mining
their corresponding graphs or networks. Literature on mining graphs or networks
has two names: graph representation and network embedding. We remark that graph
and network all refer to the same kind of structure, although each of them may have
its own terminology, e.g., a vertice and an edge in a graph v.s. a node and a link in
a network. Therefore we will exchangeably use graph representation and network
embedding without further explanations in the remainder of this chapter. The core

W. Zhu (B) · X. Wang · P. Cui
Tsinghua University, Beijing, China
e-mail: wwzhu@tsinghua.edu.cn

X. Wang
e-mail: xin_wang@tsinghua.edu.cn

P. Cui
e-mail: cuip@tsinghua.edu.cn

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_6

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_6&domain=pdf
mailto:wwzhu@tsinghua.edu.cn
mailto:xin_wang@tsinghua.edu.cn
mailto:cuip@tsinghua.edu.cn
https://doi.org/10.1007/978-3-030-31756-0_6

170 W. Zhu et al.

of mining graphs/networks relies heavily on properly representing graphs/networks,
making representation learning on graphs/networks a fundamental research prob-
lem in both academia and industry. Traditional representation approaches represent
graphs directly based on their topologies, resulting in many issues including sparse-
ness, high computational complexities etc., which actuates the advent of machine
learning based methods that explore the latent representations capable of capturing
extra information in addition to topological structures for graphs in vector space. As
such, the ability to find “good” latent representations for graphs plays an important
role in accurate graph representations. However, learning network representations
faces challenges as follows:

1. High non-linearity. As is claimed by Luo et al. [43], the network has highly
non-linear underlying structure. Accordingly, it is a rather challenging work to
design a proper model to capture the highly non-linear structure.

2. Structure-preserving. With the aim of supporting network analysis applications,
preserving the network structure is required for network embedding. However,
the underlying structure of the network is quite complex [55]. In that the similarity
of vertexes depends on both the local and global network structure, it is a tough
problem to preserve the local and global structure simultaneously.

3. Property-preserving. Real-world networks are normally very complex, their
formation and evolution are accompanied with various properties such as uncer-
tainties and dynamics. Capturing these properties in graph representation is of
significant importance and poses great challenges.

4. Sparsity. Real-world networks are often too sparse to provide adequate observed
links for utilization, consequently causing unsatisfactory performances [50].

Many network embedding methods have been put forward, which adopt shallow
models like IsoMAP [62], Laplacian Eigenmaps (LE) [4] and Line [61]. However,
on account of the limited representation ability [6], it is challenging for them to
capture the highly nonlinear structure of the networks [63]. As [76] stated, although
some methods adopt kernel techniques [68], they still belong to shallow models,
incapable of capturing the highly non-linear structure well. On the other hand, the
success of deep learning in handling non-linearity brings us great opportunities for
accurate representations in latent vector space. One natural question is that can we
utilize deep learning to boost the performance of graph representation learning? The
answer is yes, and we will discuss some recent advances in combining deep learning
techniques with graph representation learning in this chapter. Our discussions fall in
two categories of approaches: deep structure-oriented approaches and deep property-
oriented approaches. For structure-oriented approaches, we include three methods
as follows.

• Structural deep network embedding (SDNE) [69] that focuses on preserving high
order proximity.

• Deep recursive network embedding (DRNE) [66] that focuses on preserving global
structure.

• Deep hyper-network embedding (DHNE) [65] that focuses on preserving hyper
structure.

Deep Learning for Learning Graph Representations 171

For property-oriented approaches, we discuss:

• Deep variational network embedding (DVNE) [73] that focuses on the uncertainty
property.

• Deeply transformed high-order Laplacian Gaussian process (DepthLGP) based
network embedding [44] that focuses on the dynamic (i.e., out-of-sample) property.

Deep Structure-Oriented Methods

2 High Order Proximity Preserving Network Embedding

Deep learning, as a powerful tool capable of learning complex structures of the
data [6] through efficient representation, has been widely adopted to tackle a large
number of tasks related to image [38], audio [29] and text [58] etc. Topreserve thehigh
order proximity as well as capture the highly non-linear structure, Wang et al. [69]
propose to learn vertex representations for networks by resorting to autoencoder,
motivated by the recent success of deep neural networks. Concretely, the authors
design a multi-layer architecture containing multiple non-linear functions, which
maps the data into a highly non-linear latent space, thus is able to capture the highly
non-linear network structure.

So as to resolve the structure-preserving and sparsity problems in the deep
models, the authors further put forward a method to jointly mine the first-order and
second-order proximity [61] during the learning process, where the former captures
the local network structure, only characterizing the local pairwise similarity between
the vertexes linked by edges. Nonetheless, many legitimate links are missing due to
the sparsity of the network. Consequently, the first-order proximity alone cannot
represent the network structure sufficiently. Therefore, the authors further advance
the second-order proximity, the indication of the similarity among the vertexes’
neighborhood structures, to characterize the global structure of networks. With the
first-order and second-order proximity adopted simultaneously, the model can cap-
ture both the local and global network structures well respectively. The authors also
propose a semi-supervised architecture to preserve both the local and global network
structure in the deep model, where the first-order proximity is exploited as the super-
vised information by the supervised component exploits, preserving the local one,
while the second-order proximity is reconstructed by the unsupervised component,
preserving the global one. Moreover, as is illustrated in Fig. 1, there are much more
pairs of vertexes having second-order proximity than first-order proximity. Hence, in
the light of characterizing the network structure, importing second-order proximity
can provide much more information. In general, for purpose of preserving the net-
work structure, SDNE is capable of mapping the data to a highly non-linear latent
space while it is also robust to sparse networks. To our best knowledge, SDNE is
among the first to adopt deep learning structures for network representation learning.

172 W. Zhu et al.

arxiv−GrQc blogcatalog Flickr Youtube

10

15

20

25

dataset

lo
g(

nu
m

be
r)

First−order Proximity
Second−order Proximity

Fig. 1 The number of pairs of vertexes which have first-order and second-order proximity in
different datasets, figure from [69]

2.1 Problem Definition

Definition 2.1 (Graph) G = (V, E) represents a graph, where V = {v1, ..., vn}
stands for n vertexes and E = {ei, j }ni, j=1 stands for the edges. Each edge ei, j is
associated with a weight si, j ≥ 0.1 For vi and v j without being linked by any edge,
si, j = 0. Otherwise, si, j = 1 for unweighted graph and si, j > 0 for weighted graph.

Thegoal of network embedding ismapping thegraphdata into a lower-dimensional
latent space. Specifically, each vertex is mapped to a low-dimensional vector so that
the network computation can be directly done in that latent space. As mentioned
before, preserving both local and global structure is essential. First, the first-order
proximity able to characterize the local network structure, is defined as follows.

Definition 2.2 (First-Order Proximity) The first-order proximity represents the pair-
wise proximity between vertexes. For a vertex pair, first-order proximity between vi
and v j is positive if si, j > 0 and 0 otherwise.

Spontaneously, network embedding is requisite to preserve the first-order prox-
imity for the reason that it means that two vertexes linked by an observed edge in
real-world networks are always similar. For instance, if a paper is cited by another,
they are supposed to have some common topics. Nonetheless, real-world datasets
often have such high sparsity that only a small portion is the observed links. Many
vertexes with similarity are not linked by any edges in the networks. Accordingly, it is
not sufficient to only capture the first-order proximity, which is why the second-order
proximity is introduced as follows to characterize the global network structure.

1Negative links exist in signed network, but only non-negative links are considered here.

Deep Learning for Learning Graph Representations 173

Definition 2.3 (Second-Order Proximity) The second-order proximity of a ver-
tex pair represents the proximity of the pair’s neighborhood structure. Let Nu =
{su,1, ..., su,|V |} stand for the first-order proximity between vu and other vertexes.
Second-order proximity is then decided by the similarity of Nu and Nv .

Intuitively, the second-order proximity presumes two vertexes to be similar if
they share many common neighbors. In many fields, such an assumption has been
proved reasonable [18, 35]. For instance, if two linguistics words always have similar
contexts, theywill usually be similar [18]. People sharingmany common friends tend
to be friends [35]. It has been demonstrated that the second-order proximity is a good
metric for defining the similarity between vertex pairs even without being linked
by edges [42], which can also highly improve the richness of vertex relationship
consequently. Thus, taking the second-order proximity into consideration enables
the model to capture the global network structure and relieve the sparsity problem
as well.

To preserve both the local and global structurewhen in network embedding scenar-
ios, we now focus on the problem of how to integrate the first-order and second-order
proximity simultaneously, the definition of which is as follows.

Definition 2.4 (Network Embedding) Given a graph G = (V, E), the goal of net-
work embedding is learning amapping function f : vi �−→ yi ∈ R

d , where d � |V |.
The target of the function is to enable the similarity between yi and yj to preserve
the first-order and second-order proximity of vi and v j explicitly.

2.2 The SDNE Model

This section discusses the semi-supervised SDNEmodel for network embedding, the
framework of which is illustrated in Fig. 2. Specifically, for purpose of characterizing
the highly non-linear network structure, the authors put forward a deep architecture
containing numerous non-linear mapping functions to transform the input into a
highly non-linear latent space. Moreover, for purpose of exploiting both the first-
order and second-order proximity, a semi-supervised model is adopted, aiming to
resolve the problems of structure-preserving and sparsity. We are able to obtain the
neighborhood of each vertex. Hence, to preserve the second-order proximity by the
method of reconstructing the neighborhood structure of every vertex, the authors
project the unsupervised component. At the same time, for a small portion of ver-
tex pairs, obtaining their pairwise similarities (i.e. the first-order proximity) is also
possible. Thus, the supervised component is also adopted to exploit the first-order
proximity as the supervised information for refining the latent representations. By
optimizing these two types of proximity jointly in the semi-supervised model pro-
posed, SDNE is capable of preserving the highly-nonlinear local and global network
structure well and is also robust when dealing with sparse networks.

174 W. Zhu et al.

Fig. 2 Framework of the SDNE model, figure from [69]

2.2.1 Loss Functions

We give definition of some notations and terms, before defining the loss functions, to
be used later in Table1. Note that ˆ symbol above the parameters stands for decoder
parameters.

To begin with, we describe how the second-order proximity is exploited by the
unsupervised component in order to preserve the global network structure.

The second-order proximity refers to the similarity of the neighborhood struc-
ture of a vertex pair. Therefore, to capture it properly, we need to consider the
neighborhood of each vertex when modeling. For a network G = (V, E), its adja-
cency matrix S containing n instances s1, ..., sn can be easily obtained. For each

Table 1 Terms and notations

Symbol Definition

n Number of vertexes

K Number of layers

S = {s1, ..., sn} The adjacency matrix for the network

X = {xi }ni=1, X̂ = {x̂i }ni=1 The input data and reconstructed data

Y (k) = {y(k)
i }ni=1 The k-th layer hidden representations

W (k), Ŵ (k) The k-th layer weight matrix

b(k), b̂(k) The k-th layer biases

θ = {W (k), Ŵ (k),b(k), b̂(k)} The overall parameters

Deep Learning for Learning Graph Representations 175

instance si = {si, j }nj=1, si, j > 0 iff there exists a link between vi and v j . Therefore,
si represents the neighborhood structure of the vertex vi , i.e., S involves the informa-
tion of each vertex’s neighborhood structure. Based on S, conventional deep autoen-
coder [54] is extended for purpose of preserving the second-order proximity.

We briefly review the key ideas of deep autoencoder to be self-contained. A deep
autoencoder is an unsupervised model consisting of an encoder and decoder. The
two parts both consist of numerous non-linear functions, while the encoder maps
the input data to the representation space and the decoder maps the representation
space to reconstruction space. The hidden representations for each layer are defined
as follows, given the input xi .2

y(1)
i = σ(W (1)xi + b(1))

y(k)
i = σ(W (k)y(k−1)

i + b(k)), k = 2, ..., K .
(1)

With y(K)
i obtained, the output x̂i can be obtained through the reversion the

encoder’s computation process. The goal of an autoencoder is minimizing the recon-
struction error between input and output, to achievewhich the following loss function
can be defined.

L =
n∑

i=1

‖x̂i − xi‖22. (2)

As proven by [54], the reconstruction formula can smoothly characterize the
data manifolds and thus preserve it implicitly though not explicitly. Consider this
case: if the adjacency matrix S is inputted into the autoencoder, i.e., xi = si , the
reconstruction process will output the similar latent representations for the vertexes
with similar neighborhood structures, as each instance si captures the neighborhood
structure of the vertex vi .

However, owing to some specific characteristics of the networks, such a recon-
struction process cannot fit our problem straightforward. In the networks, some links
can be observed, while many other legitimate links cannot. It suggests that while the
links among vertexes do indicate their similarity, having no links does not necessarily
indicate dissimilarity between the vertexes. In addition, the number of 0 elements in
S is far more than that of non-zero elements due to the sparsity of networks. Thus,
by directly inputting S to the conventional autoencoder, there is a tendency of recon-
structing the 0 elements in S, which does not fit out expectation. Therefore, with the
help of the revised objective function as follows, SDNE imposes more penalty to the
reconstructing error for the non-zero elements than that for 0 elements:

L2nd =
n∑

i=1

‖(x̂i − xi) � bi‖22

= ‖(X̂ − X) � B‖2F ,

(3)

2Here the authors use sigmoid function σ(x) = 1
1+exp(−x) as the non-linear activation function.

176 W. Zhu et al.

where � stands for the Hadamard product, bi = {bi, j }nj=1. If si, j = 0, bi, j = 1, else
bi, j = β > 1. Now by inputting S to the revised deep autoencoder, vertexes with
alike neighborhood structure will have close representations in the latent space,
which is guaranteed by the reconstruction formula. In another word, reconstructing
the second-order proximity among vertexes enables the unsupervised component of
SDNE to preserve the global network structure.

As explained above, preserving the global and local network structure are both
essential in this task. For purpose of representing the local network structure, the
authors use first-order proximity, the supervised information for constraining the
similarity among the latent representations of vertex pairs. Hence, the supervised
component is designed to exploit this first-order proximity. The following definition
of loss function is designed for this target.3

L1st =
n∑

i, j=1

si, j‖y(K)
i − y(K)

j ‖22

=
n∑

i, j=1

si, j‖yi − y j‖22.
(4)

A penalty is incurred by this objective function when similar vertexes are mapped
far away in the latent representation space, which borrows the idea of Laplacian
Eigenmaps [4]. Other works on social networks [34] also use the similar idea. SDNE
differs from thesemethods on the fact that it incorporates this idea into the deepmodel
to embed the linked-by-edge vertexes close to each other in the latent representation
space, preserving the first-order proximity consequently.

For purpose of preserving the first-order and second-order proximity simultane-
ously, Eqs. (4) and (3) is combined by SDNE through jointlyminimizing the objective
functions as follows.

Lmix = L2nd + αL1st + νLreg

= ‖(X̂ − X) � B‖2F + α

n∑

i, j=1

si, j‖yi − y j‖22 + νLreg,
(5)

where Lreg stands for an L2-norm regularizer term as follows, aiming to avoid
overfitting:

Lreg = 1

2

K∑

k=1

(‖W (k)‖2F + ‖Ŵ (k)‖2F).

3To simplify the notations, network representations Y (K) = {y(K)
i }ni=1 are denoted as Y = {yi }ni=1

by the authors.

Deep Learning for Learning Graph Representations 177

2.2.2 Optimization

For purpose of optimizing the model mentioned above, we minimize Lmix as a
function of θ. Specifically, the critical step is computing the partial derivative of
∂Lmix/∂Ŵ (k) and ∂Lmix/∂W (k) with the following detailed mathematical form:

∂Lmix

∂Ŵ (k)
= ∂L2nd

∂Ŵ (k)
+ ν

∂Lreg

∂Ŵ (k)

∂Lmix

∂W (k)
= ∂L2nd

∂W (k)
+ α

∂L1st

∂W (k)
+ ν

∂Lreg

∂W (k)
, k = 1, ..., K .

(6)

First, we focus on ∂L2nd/∂Ŵ (K), which can be rephrased as follows.

∂L2nd

∂Ŵ (K)
= ∂L2nd

∂ X̂
· ∂ X̂

∂Ŵ (K)
. (7)

In light of Eq. (3), for the first term we have

∂L2nd

∂ X̂
= 2(X̂ − X) � B. (8)

The computation of the second term ∂ X̂/∂Ŵ is simple because X̂ = σ(Ŷ (K−1)

Ŵ (K) + b̂(K)), with which ∂L2nd/∂Ŵ (K) is available. Through back-propagation
method,we can iteratively acquire ∂L2nd/∂Ŵ (k), k = 1, ...K − 1 and ∂L2nd/∂W (k),

k = 1, ...K .
Next, we move on to the partial derivative of ∂L1st/∂W (k). The loss function of

L1st can be rephrased as follows.

L1st =
n∑

i, j=1

si, j‖yi − y j‖22 = 2tr(Y T LY), (9)

where L = D − S, D ∈ R
n×n stands for the diagonal matrix where Di,i = ∑

j si, j .
Next, we center upon the computation of ∂L1st/∂W (K) first:

∂L1st

∂W (K)
= ∂L1st

∂Y
· ∂Y

∂W (K)
. (10)

Because Y = σ(Y (K−1)W (K) + b(K)), the computation of the second term
∂Y/∂W (K) is simple. For ∂L1st/∂Y , we hold

∂L1st

∂Y
= 2(L + LT) · Y. (11)

178 W. Zhu et al.

Likewise, the calculation of partial derivative of L1st can be finally finished
through back-propagation.

All the partial derivatives of the parameters have been acquired now. After imple-
menting parameter initialization, we can optimize the deep model proposed above
with stochastic gradient descent. It is worth mentioning that owing to its high nonlin-
earity, the model may fall into many local optimum in the parameter space. Hence,
the authors adopt Deep Belief Network as a method of pretraining at first [30] to
find a good region in parameter space, which has been proved to be an fundamental
way of initialization for deep learning architectures [24]. Algorithm 1 presents the
complete algorithm.

2.3 Analysis and Discussions on SDNE

New Vertexes. Learning representations for newly arrived vertexes is a practical
issue for network embedding. If we know the connections of a new vertex vk to the
existing vertexes, its adjacency vector x = {s1,k, ..., sn,k} is easy to obtained, where
si,k indicates the similarity between the new vertex vk and the existing vi . Then x can
be simply fed into the deep model, after which we can calculate the representations
for vk with the trained parameters θ. For such a process, the time complexity is O(1).
Nonetheless, SDNE fails when there are no connections between existing vertexes
and vk in the network.

Algorithm 1 Training Algorithm for SDNE
Require: the network G = (V, E) with adjacency matrix S, the parameters ν and α
Ensure: Representations Y of the network and updated Parameters: θ
1: Pretrain the model with deep belief network, obtaining the parameters θ = {θ(1), ..., θ(K)}
2: X = S
3: repeat
4: Apply Eq. (1) to calculate X̂ and Y = Y K given X and θ.
5: Lmix (X; θ) = ‖(X̂ − X) � B‖2F + 2αtr(Y T LY) + νLreg .
6: Utilize ∂Lmix/∂θ to back-propagate throughout the entire network based on Eq. (6) to cal-

culate the updated parameters of θ.
7: until convergence
8: Return the network representations Y = Y (K)

Training Complexity. The complexity of SDNE is O(ncd I), where n stands for
the number of vertexes, c represents the average degree of the network, d stands
for the maximum dimension of the hidden layer, and I represents the number of
iterations. d is often related to the dimension of the embedding vectors but not n,
while I is also independent of n. In real-world applications, the parameter c can
be regarded as a constant. For instance, the maximum number of a user’s friends
is always bounded [63] in a social network. Meanwhile, c = k in a top-k similarity
graph. Thus, cd I is also independent of n. So the total training complexity is actually
linear to n .

Deep Learning for Learning Graph Representations 179

3 Global Structure Preserving Network Embedding

As is discussed, one fundamental problem of network embedding is how to preserve
the vertex similarity in an embedding space, i.e., two vertexes should have the similar
embedding vectors if they have similar local structures in the original network. To
quantify the similarity among vertexes in a network, the most common one among
multiple methods is structural equivalence [41], where two vertexes sharing lots
of common network neighbors are considered structurally equivalent. Besides, pre-
serving structural equivalence through high-order proximities [61, 69] is the aim of
most previous work on network embedding, where network neighbors are extended
to high-order neighbors, e.g., direct neighbors and neighbors-of-neighbors, etc.

However, vertexes without any common neighbors can also occupy similar posi-
tions or play similar roles in many cases. For instance, two mothers share the same
pattern of connecting with several children and one husband (the father). The two
mothers do share similar positions or roles although they are not structurally equiv-
alent if they do not share any relatives. These cases lead to an extended definition
of vertex similarity known as regular equivalence: two regularly equivalent vertexes
have network neighborswhich are themselves similar (i.e., regularly equivalent) [52].
As neighbor relationships in a network can be defined recursively, we remark that
regularly equivalence is able to reflect the global structure of a network. Besides,
regular equivalence is, apparently, a relaxation of structural equivalence. Structural
equivalence promises regular equivalence, while the reverse direction does not hold.
Comparatively, regular equivalence is more capable and flexible of covering a wider
range of network applications with relation to node importance or structural roles,
but is largely ignored by previous work on network embedding.

For purpose of preserving global structure and regular equivalence in network
embedding, i.e., two nodes of regularly equivalence should have similar embeddings,
a simple way is to explicitly compute the regular equivalence of all vertex pairs and
preserve the similarities of corresponding embeddings of nodes to approximate their
regular equivalence. Nevertheless, due to the high complexity in computing regular
equivalence in large-scale networks, this idea is infeasible. Another way is to replace
regular equivalencewith simpler graph theoreticmetrics, such as centralitymeasures.
Although many centrality measures have been proposed to characterize the impor-
tance and role of a vertex, it is still difficult to learn general and task-independent
node embeddings because one centrality can only capture a specific aspect of network
role. In addition, some centrality measures, e.g., betweeness centrality, also bear high
computational complexity. Thus, how to efficiently and effectively preserve regular
equivalence in network embedding is still an open problem.

Fortunately, the recursive nature in the definition of regular equivalence enlightens
Tu et al. [66] to learn network embedding in a recursive way, i.e., the embedding of
one node can be aggregated by its neighbors’ embeddings. In one recursive step
(Fig. 3), if nodes 7 and 8, 4 and 6, 3 and 5 are regularly equivalent and thus have
similar embeddings already, then nodes 1 and 2 would also have similar embeddings,
resulting in their regular equivalence. It is this idea that inspires the design of the

180 W. Zhu et al.

Fig. 3 A simple graph to illustrate the rationality of why recursive embedding can preserve regular
equivalence. The regularly equivalent nodes share the same color, figure from [66]

Deep Recursive Network Embedding (DRNE) model [66]. In specific, the neighbors
of a node are transformed into an ordered sequence and a layer normalized LSTM
(Long Short Term Memory networks) [31] is proposed to aggregate the embeddings
of neighbors into the embedding of the target node in a non-linear way.

3.1 Preliminaries and Definitions

In this section, we discuss the Deep Recursive Network Embedding (DRNE) model
whose framework is demonstrated in Fig. 4. Taking node 0 in Fig. 4 as an example,
we sample three nodes 1, 2, 3 from its neighborhoods and sort them by degree as a
sequence (3, 1, 2).Weuse the embeddings of theneighborhoods sequenceX3,X1,X2

as input, aggregating them by a layer normalized LSTM to get the assembled rep-
resentation hT . By reconstructing the embedding X0 of node 0 with the aggregated
representation hT , the embedding X0 can preserve the local neighborhood structure.
On the other hand, we use the degree d0 as weak supervision information of central-
ity and put the aggregated representation hT into a multilayer perceptron (MLP) to
approximate degree d0. The same process is conducted for each other node.Whenwe

Fig. 4 DeepRecursive Network Embedding (DRNE). a Sampling neighborhoods. b Sorting neigh-
borhoods by their degrees. c Layer-normalized LSTM to aggregate embeddings of neighboring
nodes into the embedding of the target node. Xi is the embedding of node i and LN means layer
normalization. d AWeakly guided regularizer. Figure from [66]

Deep Learning for Learning Graph Representations 181

update the embedding of the neighborhoodsX3,X1,X2, it will affect the embeddings
X0. Repeating this procedure by updating the embeddings iteratively, the embeddings
X0 can contain structural information of the whole network.

Given a network G = (V, E), where V stands for the set of nodes and E ∈
V × V edges. For a node v ∈ V , N (v) = {u|(v, u) ∈ E} represents the set of its
neighborhoods. The learned embeddings are defined as X ∈ R

|V |×k where k is the
dimension andXv ∈ R

k is the embedding of node v. The degree of node v is defined
as dv = |N (v)| and function I (x) = 1 if x ≥ 0 otherwise 0. The formal definition
of structural equivalence and regular equivalence is given as follows.

Definition 3.1 (Structural Equivalence) We denote s(u) = s(v) if nodes u and v

are structurally equivalent. Then s(u) = s(v) if and only if N (u) = N (v).

Definition 3.2 (Regular Equivalence) We denote r(u) = r(v) if nodes u and v are
regularly equivalent. Then r(u) = r(v) if and only if {r(i)|i ∈ N (u)} = {r(j)| j ∈
N (u)}.

3.2 The DRNE Model

3.2.1 Recursive Embedding

In light of Definition 3.2, DRNE learns the embeddings of nodes recursively: the
embedding of a target node can be approximated by aggregating the embeddings of
its neighbors, So we can use the following loss function:

L1 =
∑

v∈V
||Xv − Agg({Xu |u ∈ N (v)})||2F , (12)

where Agg is the function of aggregation. In each recursive step, the local structure
of the neighbors of the target node can be preserved by its learned embedding.
Therefore, the learned node embeddings can incorporate the structural information
in a global sense by updating the learned representations iteratively, which consists
with the definition of regular equivalence.

As for the aggregating function, DRNE utilizes the layer normalized Long
Short-Term Memory(ln-LSTM) [3] due to the highly nonlinearity of the underly-
ing structures of many real networks [43]. LSTM is an effective model for modeling
sequences, as is known to all. Nonetheless, in networks, the neighbors of a node
have no natural ordering. Here the degree of nodes is adopted as the criterion of sort-
ing neighbors in an ordered sequence for the reason that taking degree as measure
for neighbor ordering is the most efficient and that degree is a crucial part in many
graph-theoretic measures, notably those relating to structural roles, e.g. Katz [47]
and PageRank [49].

182 W. Zhu et al.

Suppose {X1, X2, ..., Xt , ..., XT } are the embeddings of the ordered neighbors. At
each time step t , the hidden state ht is a function of its previous hidden state ht−1 and
input embedding Xt , i.e., ht = LST MCell(ht−1, Xt). The information of hidden
representation ht will become increasingly abundant while the embedding sequence
is processed by LSTM Cell recursively from 1 to T . Therefore, hT can be treated as
the aggregation of the representation from neighbors. In addition, LSTMwith gating
mechanisms is effective in learning long-distance correlations in long sequences.
In the structure of LSTM, the input gate along with old memory decides what new
information to be stored in memory, the forget gate decides what information to be
thrown away from the memory and output gate decides what to output based on the
memory. Specifically, LSTMCell, the LSTM transition equation, can be written as
follows.

ft = σ(W f · [ht−1,Xt] + b f), (13)

it = σ(Wi · [ht−1,Xt] + bi), (14)

ot = σ(Wo · [ht−1,Xt] + bo), (15)

C̃t = tanh(WC · [ht−1,Xt] + bC), (16)

Ct = ft ∗ Ct−1 + it ∗ C̃t , (17)

ht = ot ∗ tanh(Ct), (18)

where σ stands for the sigmoid function, ∗ and · represent element-wise product and
matrix product respectively, Ct represents the cell state, it , ft and ot are input gate,
forget gate and output gate respectively.W∗ and b∗ are the parameters to be learned.

Moreover, the Layer Normalization [3] is adopted in DRNE for purpose of avoid-
ing the problems of exploding or vanishing gradients [31] when long sequences are
taken as input. The layer normalized LSTM makes re-scaling all of the summed
input invariant, resulting in much more stable dynamics. In particular, with the extra
normalization as follows, it re-centers and re-scales the cell state Ct after Eq. (17).

C ′
t = g

�t
∗ (Ct − μt), (19)

where μt = 1/k
∑k

i=1 Cti and �t =
√
1/k

∑k
i=1(Cti − μt)2 are the mean and vari-

ance of Ct , and g is the gain parameter scaling the normalized activation.

3.2.2 Regularization

Without any other constraints,L1 defined in Eq. (12) represents the recursive embed-
ding process according to Definition 3.2. Its expressive power is so strong that we can
obtain multiple solutions to satisfy the recursive process defined above. The model
take a risk of degenerating to a trivial solution: all the embeddings become 0. For

Deep Learning for Learning Graph Representations 183

purpose of avoiding this degeneration, DRNE takes node degree as the weakly guid-
ing information, i.e., imposing a constraint that the learned embedding of a target
node should be capable of approximating its degree. Consequently, the following
regularizer is designed:

Lreg =
∑

v∈V
‖log(dv + 1) − MLP(Agg({Xu|u ∈ N (v)}))‖2F , (20)

where the degree of node v is denoted by dv and MLP stands for a single-layer mul-
tilayer perceptron taking the rectified linear unit (ReLU) [26] as activation function,
defined as ReLU (x) = max(0, x). DRNE minimizes the overall objective function
by combining reconstruction loss in Eq. (12) and the regularizer in Eq. (20):

L = L1 + λLreg, (21)

where λ is the balancing weight for regularizer. Note that degree information is not
taken as the supervisory information for network embedding here. Alternatively, it is
finally auxiliary to avoid degeneration. Therefore, the value of λ should be set small.

Neighborhood Sampling. The node degrees usually obey a heavy-tailed distribu-
tion [23] in real networks, i.e., the majority of nodes have very small degrees while a
minor number of nodes have very high degrees. Inspired by this phenomenon, DRNE
downsamples the neighbors of those large-degree nodes before feeding them into the
ln-LSTM to improve the efficiency. In specific, an upper bound for the number of
neighbors S is set. When the number of neighbors exceeds S, the neighbors are
downsampled into S different nodes. An example on the sampling process is shown
in Fig. 4a and b. In networks obeying power-law, more unique structural informa-
tion are carried by the large-degree nodes than the common small-degree nodes.
Therefore, a biased sampling strategy is adopted by DRNE to retain the large-degree
nodes by setting P(v) ∝ dv , i.e., the probability of sampling neighbor node v being
proportional to its degree.

3.2.3 Optimization

For purpose of optimizing DRNE, we need to minimize the total loss L as a func-
tion of the embeddings X and the neural network parameters set θ. These param-
eters are optimized by Adam [36]. The BackPropagation Through Time (BPTT)
algorithm [71] estimates the derivatives. At the beginning of the training, the learn-
ing rate α for Adam is initialized to 0.0025. Algorithm 2 demonstrates the whole
algorithm.

184 W. Zhu et al.

Algorithm 2 Deep Recursive Network Embedding
Require: the network G = (V, E)

Ensure: the embeddings X, updated neural network parameters set θ
1: initial θ and X by random process
2: while the value of objective function do not converge do
3: for a node v ∈ E do
4: downsampling v’s neighborhoods if its degree exceeds S
5: sort the neighborhoods by their degrees
6: fixed aggregator function, calculate partial derivative ∂L/∂X to update embeddings X
7: fixed embeddings, calculate partial derivative ∂L/∂θ to update θ
8: end for
9: end while
10: obtain the node representations X

3.2.4 Theoretical Analysis

It can be theoretically proved that the resulted embeddings from DRNE can reflect
several common and typical centrality measures closely related to regular equiva-
lence. In the following process of proof, the regularizer term in Eq. (20) for elimi-
nating degeneration is ignored without loss of generality.

Theorem 1 Eigenvector centrality [7], PageRank centrality [49] and degree cen-
trality are three optimal solutions of DRNE, respectively.

Lemma 1 For any computable function, there exists a finite recurrent neural net-
work (RNN) [45] that can compute it.

Proof This is a direct consequence of Theorem 1 in [56]. �

Theorem 2 If the centralityC(v)of nodev satisfies thatC(v) = ∑
u∈N (v) F(u)C(u)

and F(v) = f ({F(u), u ∈ N (v)}) where f is any computable function, then C(v)

is one of the optimal solutions for DRNE.

Proof For brevity, let us suppose that LSTM takes linear activation for all the acti-
vation function. This lemma is proved by showing that there exists a parameter
setting {W f ,Wi ,Wo,WC ,b f ,bi ,bo,bC } in Eqs. (13), (14), (15) and (16) such
that the node embedding Xu = [F(u),C(u)] is a fixed point. In fact, this param-
eter settings can be directly constructed. Suppose Wa,i denotes the i-th row of
Wa . With the input sequence {[F(u),C(u)], u ∈ N (v)}, set W f,2 and Wo,2 as
[0, 0], Wi,2 as [1, 0], WC,2 as [0, 1], b f,2 and bo,2 as 1, bi,2 and bC,2as 0, then
we can easily get ht,2 = o f,2 ∗ Ct,2 = Ct,2 = ft,2 ∗ Ct−1,2 + it,2 ∗ C̃t,2 = Ct−1,2 +
F(t) ∗ C(t). Hence, hT,2 = ∑

u∈N (v) F(u)C(u) = C(v) where T is the length of
the input sequence. Additionally, by Lemma 1, there exists a parameter setting
{W′

f ,W
′
i ,W

′
o,W

′
C ,b′

f ,b
′
i ,b

′
o,b

′
C } to approximate f . By setW f,1 as [W′

f , 0],Wo,1

as [W′
o, 0] and so on, we can get that hT,1 = f ({F(u), u ∈ N (v)}) = F(v). There-

fore hT = [F(v),C(v)] and the node embeddingXv = [F(v),C(v)] is a fixed point.
The proof is now completed. �

Deep Learning for Learning Graph Representations 185

Table 2 Definition of centralities

Centrality Definition C(v) F(v) f ({xi })
Eigenvector 1/λ ∗ ∑

u∈N (v) C(u) 1/λ Mean

PageRank
∑

u∈N (v) 1/du ∗ C(u) 1/dv 1/(
∑

I (xi))

Degree dv = ∑
u∈N (v) I (du) 1/dv 1/(

∑
I (xi))

We can easily conclude that eigenvector centrality, PageRank centrality, degree
centrality satisfy the condition of Theorem 2 by the definitions of centralities in
Table2 with (F(v), f ({xi })), completing the proof for Theorem 1.

Based on Theorem 1, such a parameter setting of DRNE exists for any graph
that the resulted embeddings are able to be one of the three centralities. This shows
such expressive power of DRNE that different aspects of regular-equivalence-related
network structural information are captured.

3.2.5 Analysis and Discussions

This section presents the out-of-sample extension and the complexity analysis.

Out-of-Sample Extension. For a node v newly arrived, we can feed the embed-
dings of its neighbors directly into the aggregating function to get the aggregated
representation, i.e., the embedding of the new node through Eq. (12), if we know
its connections to the existing nodes. Such a procedure has a complexity of O(dvk),
where dv stands for the degree of node v and k represents the length of embeddings.

Complexity Analysis. For a single node v in each iteration during the training pro-
cedure, the complexity of gradients calculation and parameters updating is O(dvk2),
where k stands for the length of embeddings abd dv represents the degree of node v.
The aforementioned sampling process keeps dv from exceeding the bound S. There-
fore, the total training complexity is O(|V |Sk2 I) where I stands for the number of
iterations. k, the length of embeddings, usually takes a small number (e.g. 32, 64,
128). The upper bound S is 300 in DRNE. The number of iterations I normally takes
a small number which is independent with |V |. Hence, the total time complexity of
training procedure is actually linear to the number of nodes |V |.

4 Structure Preserving Hyper Network Embedding

Conventional pairwise networks are the scenarios of most network embedding meth-
ods, where each edge connects only a pair of nodes. Nonetheless, the relationships
among data objects are much more complicated in real world applications, and they
typically gobeyondpairwise. For instance, Jackpurchasing a coatwith nylonmaterial

186 W. Zhu et al.

Fig. 5 a One example of a hyper-network. bDHNE. c The clique expansion. d The star expansion.
DHNEmodels the hyperedge by and large, preserving the tuplewise similarity. In the case of clique
expansion, each hyperedge is expanded into a clique, where each node pair is explicitly similar. In
the case of the star expansion, each node of a hyperedge is linked to a new node representing the
origin hyperedge, each node pair of which is implicitly similar in that they are linked to the same
node. Figure from [65]

forms a high-order relationship 〈Jack, coat, nylon〉. A network designed to capture
this kind of high-order node relationship is often known as a hyper-network.

For purpose of analyzing hyper-network, expanding them into traditional pairwise
networks and then applying the analytical pairwise-network-based algorithms is a
typical idea. Star expansion [1] (Fig. 5d) and clique expansion [60] (Fig. 5c) are
two representative techniques of this category. For star expansion, a hypergraph is
changed into a bipartite graph where each hyperedge is represented by an instance
node linking to the original nodes contained by it. For clique expansion, a hyperedge
is expanded as a clique. These methods make an assumption that the hyperedges are
decomposable either implicitly or explicitly. In other words, if a set of nodes is treated
as a hyperedge, then any subset of nodes contained by this hyperedge can constitute
another hyperedge. This assumption is reasonable in homogeneous hyper-networks,
because the constitution of hyperedges are caused by the latent similarity among the
concerned objects, e.g. common labels, in most cases. Nonetheless, when it comes
to the heterogeneous hyper-network embedding, it is essential to resolve the new
demand as follows.

1. Indecomposablity: In heterogeneous hyper-networks, the hyperedges are often
indecomposable. In the circumstances, a node set in a hyperedge has a strong
inner relationship, whereas the nodes in its subset does not necessarily have. As an
instance, in a recommendation system which has 〈user, movie, tag〉 relationships,
the relationships of 〈user, tag〉 are often not strong. This phenomenon suggests
that using those traditional expansion methods to simply decompose hyperedges
does not make sense.

2. Structure Preserving: The observed relationships in network embedding can
easily preserve local structures. Nevertheless, many existing relationships are

Deep Learning for Learning Graph Representations 187

not observed owing to the sparsity of networks, when preserving hyper-network
structures with only local structures is not sufficient. Some global structures like
the neighborhood structures are employed to address this problem. Thus, how to
simultaneously capture and preserve both global and local structures in hyper-
networks still remains an open problem.

Tu et al. [65] put forward a deep hyper-network embedding (DHNE) model to
deal with these challenges. To resolve the Indecomposablity issue, an indecom-
posable tuplewise similarity function is designed. The function is straightforward
defined over the universal set of the nodes contained by a hyperedge, ensuring that the
subsets of it are not contained in network embedding process. They provide
theoretical proof that the indecomposable tuplewise similarity function cannot be
linear. Consequently, they implement the tuplewise similarity function as a deep
neural network with a non-linear activation function added, making it highly non-
linear. To resolve the Structure Preserving issue, a deep autoencoder is designed
to learn node representations by reconstructing neighborhood structure, making sure
that the nodes which have alike neighborhood structures also have alike embeddings.
To simultaneously address the two issues, the deep autoencoder are jointly optimized
with the tuplewise similarity function.

4.1 Notations and Definitions

The key notations used by DHNE is illustrated in Table3.

Definition 4.1 (Hyper-network) One hyper-network is a hypergraph G = (V,E)

where the set of nodes V belongs to T types V = {Vt }Tt=1 and each hyperedge of the
set of edges E may have more than two nodes E = {Ei = (v1, v2, ..., vni)}(ni ≥ 2).
The hyper-network degenerates to a network when each hyperedge has only 2 nodes.
The definition of the type of edge Ei is the combination of types of all the nodes in
the edge. If T ≥ 2, we define the hyper-network as heterogeneous hyper-network.

Table 3 Notations

Symbols Meaning

T Number of node types

V = {Vt }Tt=1 Node set

E = {(v1, v2, ..., vni)} Hyperedge set

A Adjacency matrix of hyper-network

Xj
i Embedding of node i with type j

S(X1,X2, ...,XN) N -tuplewise similarity function

W(i)
j The i-th layer weight matrix with type j

b(i)
j The i-th layer biases with type j

188 W. Zhu et al.

In order to obtain embedding in a hyper-network, it is necessary to preserve an
indecomposable tuplewise relationship. The authors give a definition to the inde-
composable structures as the first-order proximity of the hyper-network.

Definition 4.2 (TheFirst-order Proximity ofHyper-network) Thefirst-order prox-
imity of a hyper-networkmeasures theN-tuplewise similarity between nodes. If there
exists a hyperedge among any N vertexes v1, v2, ..., vN , the first-order proximity of
these N vertexes is defined as 1. Note that this implies no first-order proximity for
any subsets of these N vertexes.

In the real world, the first-order proximity suggests the indecomposable
similarity among several entities. Moreover, real world networks are always sparse
and incomplete, thus it is not sufficient to only consider first-order proximity for
learning node embeddings. To address this issue, we need to consider higher order
proximity. To capture the global structure, the authors then propose the definition of
the second-order proximity of hyper-networks.

Definition 4.3 (The Second-order Proximity of Hyper-network) The second-order
Proximity of a hyper-network measures the proximity of two nodes concerning their
neighborhood structures. For any node vi ∈ Ei , Ei/vi is defined as a neighborhood
of vi . If vi ’s neighborhoods {Ei/vi f or any vi ∈ Ei } are similar to v j ’s, then vi ’s
embedding xi should be similar to v j ’s embedding x j .

For example, in Fig. 5a, A1’s neighborhood set is {(L2,U1), (L1,U2)} and A2’s
neighborhood set is {(L2,U2), (L1,U2)}. Thus A1 and A2 are second-order similar
due to sharing common neighborhood (L1,U2).

4.2 The DHNE Model

This section presents the Deep Hyper-Network Embedding (DHNE) model, the
framework of which is illustrated in Fig. 6.

4.2.1 Loss Function

For purpose of preserving the first-order proximity of hyper-networks, an
N -tuplewise similarity measure is required in the embedding space. Such a mea-
sure should meet the requirement that when a hyperedge exists among N vertexes,
the N -tuplewise similarity of them is supposed to be large and vice versa.

Property 1 LetXi denote the embedding of node vi and S as N-tuplewise similarity
function.

• if (v1, v2, ..., vN) ∈ E, S(X1,X2, ..,XN) is supposed to be large (larger than a
threshold l without loss of generality).

Deep Learning for Learning Graph Representations 189

Fig. 6 Framework of Deep Hyper-Network Embedding (DHNE), figure from [65]

• if (v1, v2, ..., vN) /∈ E, S(X1,X2, ..,XN) is supposed to be small (smaller than a
threshold s without loss of generality).

DHNE employs a data-dependent N -tuplewise similarity function and mainly
focuses on hyperedges with uniform length N = 3, which is not difficult to extend to
N > 3. The authors also propose a theorem to show that a linear tuplewise similarity
function is not able to satisfy Property 1.

Theorem 3 Linear function S(X1,X2, ...,XN) = ∑
i WiXi cannot satisfy

Property 1.

Proof Using the counter-evidence method, let us presume that Theorem 3 is not
true, i.e., the linear function S satisfies Property 1. Consider the counter example
with 3 types of nodes where each type has 2 clusters (with the id 1 and 0). Hence, a
hyperedge exists iff 3 nodes from different types have the same cluster id. We take
the notation ofY j

i to stand for embeddings of nodes with type j in cluster i . We hold
the following inequations by Property 1:

W1Y1
0 + W2Y2

0 + W3Y3
0 > l (22)

W1Y1
1 + W2Y2

0 + W3Y3
0 < s (23)

W1Y1
1 + W2Y2

1 + W3Y3
1 > l (24)

W1Y0
1 + W2Y2

1 + W3Y3
1 < s. (25)

By combining Eqs. (22), (23), (24) and (25), we getW1 ∗ (Y1
0 − Y1

1) > l − s and
W1 ∗ (Y1

1 − Y1
0) > l − s. This is contradictory to our assumption and thus finishes

the proof. �

Theorem 3 demonstrates that N-tuplewise similarity function S are supposed
to be non-linear, which motivates DHNE to model the similarity by a multilayer

190 W. Zhu et al.

perceptron. This contains two parts, illustrated separately in the 2nd layer and 3rd
layer of Fig. 6, where the 2nd layer is a fully connected layer whose activation
functions are non-linear. Inputted with the embeddings (Xa

i ,X
b
j ,X

c
k) of 3 nodes

(vi , v j , vk), they can be concatenated and mapped non-linearly to a common latent
space L where the joint representation is shown as follows.

Li jk = σ(W(2)
a ∗ Xa

i + W(2)
b ∗ Xb

j + W(2)
c ∗ Xc

k + b(2)), (26)

where σ stands for the sigmoid function. Finally, the latent representation Li jk is
mapped to a probability space in the 3rd layer to obtain the similarity:

Si jk ≡ S(Xa
i ,X

b
j ,X

c
k) = σ(W(3) ∗ Li jk + b(3)). (27)

Hence, the combination of the second and third layers can get a non-linear tuple-
wise similarity measure function S as we hoped. For purpose of making S satisfy
Property 1, we can write the following objective function.

L1 = −(Ri jk logSi jk + (1 − Ri jk) log(1 − Si jk)), (28)

whereRi jk is defined as 1 if there is a hyperedge between vi , v j and vk and 0 otherwise.
According to the objective function, it is not difficult to point out that ifRi jk = 1, the
similarity Si jk is supposed to be large and vice versa. That is to say, the first-order
proximity is successfully preserved.

The design of the first layer in Fig. 6 aims to preserve the second-order proximity,
which measures the similarity of neighborhood structures. Here, to characterize the
neighborhood structure, the authors define the adjacency matrix of hyper-network.
Specifically, they define a |V| ∗ |E| incidence matrix H with elements h(v, e) = 1
if v ∈ e and 0 otherwise to denote a hypergraph G = (V,E). d(v) = ∑

e∈E h(v, e)
stands for the degree of a vertex v ∈ V. LetDv stand for the diagonalmatrix containing
the vertex degree, then the adjacency matrix A of hypergraph G can be defined as
A = HHT − Dv , where HT is the transpose of H. Here, each element of adjacency
matrix A stands for the concurrent times between two nodes, while the i-th row
of A demonstrates the neighborhood structure of vertex vi . To make best of this
information, DHNE utilizes an autoencoder [39]model to preserve the neighborhood
structure and feeds itwith an adjacencymatrixA as the input feature. The autoencoder
consists of two non-linear mapping: an encoder and a decoder, where the encoder
maps from feature space A to latent representation space X, while the decoder from
latent representation X space back to origin feature space Â, which can be shown as
follows.

Xi = σ(W(1) ∗ Ai + b(1)) (29)

Âi = σ(Ŵ(1) ∗ Xi + b̂(1)). (30)

Deep Learning for Learning Graph Representations 191

The aim of autoencoder is to minimize the reconstruction error between the out-
put and the input, with which process it will give similar latent representations to
the nodes with similar neighborhoods, preserving the second-order proximity con-
sequently. Note that the input feature, the adjacency matrix of the hyper-network,
is often extremely sparse. To achieve a higher efficiency, DHNE only reconstructs
non-zero elements in the adjacency matrix. The following equation shows the recon-
struction error:

||sign(Ai) � (Ai − Âi)||2F , (31)

where sign stands for the sign function.
Additionally, in a heterogeneous hyper-network, the vertexes usually have various

types, the distinct characteristics of which require the model to learn a unique latent
space for each of them. Motivated by this idea, DHNE provides each heterogeneous
type of entities with an autoencoder model of their own, as is demonstrated in Fig. 6.
The definition of loss function for all types of nodes is as follows.

Algorithm 3 The Deep Hyper-Network Embedding (DHNE)
Require: the hyper-network G = (V,E), the adjacency matrix A and the parameter α

Ensure: Hyper-network Embeddings E and updated Parameters θ = {W(i),b(i), Ŵ(i), b̂(i)}3i=1
1: Initialize parameters θ randomly
2: while the value of objective function has not converged do
3: Generate the next batch from the set of hyperedges E
4: Sample negative hyperedge in a random way
5: Compute partial derivative ∂L/∂θ with back-propagation to update θ.
6: end while

L2 =
∑

t

||sign(At
i) � (At

i − Ât
i)||2F , (32)

where t is the index for node types.
For purpose of simultaneously preserving first-order proximity and second-order

proximity for a heterogeneous hyper-network, DHNE jointly minimizes the loss
function via blending Eqs. (28) and (32):

L = L1 + αL2. (33)

4.2.2 Optimization

DHNE adopts stochastic gradient descent (SGD) for optimization, the critical step of
which is to compute thepartial derivative of parameters θ = {W(i),b(i), Ŵ(i), b̂(i)}3i=1.
By back-propagation algorithm [39], these derivatives can be easily estimated. Note
that in most real world networks, there exist only positive relationships, so that the
iterative process may degenerate to trivial convergence where all the tuplewise rela-
tionships turn out to be similar. In order to resolve this issue, DHNE samplesmultiple

192 W. Zhu et al.

negative edges with the help of a noisy distribution for each edge [46]. The whole
algorithm is demonstrated in Algorithm 3.

4.2.3 Analysis and Discussions

This section presents the out-of-sample extension and the complexity analysis.

Out-of-sample extension For any new vertex v, it is easy to obtain the
adjacency vector by this vertex’s connections to other existing vertexes. Hence,
the out-of-sample extension problem can be solved by feeding the new vertex v’s
adjacency vector into the specific autoencoder corresponded with its type and apply-
ing Eq. (29) to get its latent representation in embedding space. The time complexity
for these steps is O(ddv), where d stands for the dimensionality of the embedding
space and dv is the degree of vertex v.

Complexity analysis The complexity of gradients calculation and parameters updat-
ing in the training procedure is O((nd + dl + l)bI), where n stands for the number
of nodes, d represents the dimension of embedding vectors, l stands for the size of
latent layer, b stands for the batch size and I represents the number of iterations.
The parameter l is usually correlated with d, but independent on n and I also has no
connection with n. b is normally small. Hence, the time complexity of the training
procedure is actually linear to the number of vertexes n.

Deep Property-oriented Methods

5 Uncertainty-Aware Network Embedding

Usually, real-world networks, the constitution and evolution of which are full of
uncertainties, can be much more sophisticated than we expect. There are many rea-
sons resulting in such uncertainties. For instance, low-degree nodes in a network
fail to provide enough information and hence the representations of them are more
uncertain than others. For those nodes sharing numerous communities, the potential
contradiction among its neighborsmight also be larger than others, resulting in uncer-
tainty. Moreover, in social networks, human behaviors are sophisticated, making the
generation of edges also uncertain [72]. Therefore without considering the uncertain-
ties in networks, the information of nodes may become incomplete in latent space,
which makes the representations less effective for network analysis and inference.
Nonetheless, previous work on network embedding mainly represents each node as
a single point in lower-dimensional continuous vector space, which has a crucial
limitation that it can not capture the uncertainty of the nodes. Given that the family
of Gaussian methods are capable of innately modeling uncertainties [67] and provide
various distance functions per object, it will be promising to represent a node with a
Gaussian distribution so that the characteristics of uncertainties can be incorporated.

Deep Learning for Learning Graph Representations 193

As such, to capture the uncertainty of each node during the process of network
embedding with Gaussian process, there are several basic requirements. First, to pre-
serve the transitivity in networks, the embedding space is supposed to be a metric
space. Transitivity here is a significant property for networks, peculiarly social net-
works [32]. For instance, the possibility of a friend of my friend becoming my friend
is much larger than that of a person randomly chosen from the crowd. Moreover,
the transitivity measures the density of loops of length three (triangles) in networks,
crucial for computing clustering coefficient and related attributes [12]. Importantly,
the transitivity in networks can be preserved well on condition that the triangle
inequality is satisfied by the metric space. Second, the uncertainties of nodes should
be characterized by the variance terms so that these uncertainties can be well cap-
tured, which means that the variance terms should be explicitly related to mean
vectors. In other words, the proximities of nodes are supposed to be captured by
mean vectors, while the uncertainties of nodes are supposed to be modeled by vari-
ance terms. Third, network structures such as high-order proximity, which can be
used in abundant real-world applications as shown in [48], are also supposed to be
preserved effectively and efficiently.

Zhu et al. [73] propose a deep variational model, called DVNE, which satisfies
the above requirements and learns the Gaussian embedding in theWasserstein space.
Wasserstein space [14] is a metric space where the learned representations are able
to preserve the transitivity for networks well. Specifically, the similarity measure is
defined as Wasserstein distance, a formidable tool based on the optimal transport
theory for comparing data distributions with wide applications such as computer
vision [8] and machine learning [37]. Moreover, the Wasserstein distance enables
the fast computation for Gaussian distributions [25], taking linear time complexity
to calculate the similarity between two node representations. Meanwhile, they use a
variant of Wasserstein autoencoder (WAE) [64] to reflect the relationships between
variance and mean terms, where WAE is a deep variational model which has the
goal of minimizing the Wasserstein distance between the original data distribution
and the predicted one. In general, via preserving the first-order and second-order
proximity, the learned representations by DVNE is capable of well capturing the
local and global network structures [61, 69].

5.1 Notations

G = {V,E} stands for a network,whereV = {v1, v2, ..., vN } is a set of nodes and N is
the number of them. The set of edges between nodes is denoted asE, where M = |E|
is the number of them. Let Nbrsi = {v j |(vi , v j) ∈ E} stand for the neighbors of vi .
The transition matrix is denoted as P ∈ R

N×N , where P(:, j) and P(i, :) denote its jth
column and ith row respectively. P(i, j) stands for the element at the ith row and jth
column. Given that an edge links vi to v j and node degree of vi is di , we set P(i, j)
to 1

di
and zero otherwise. Then, hi = N (¯i , �i) is defined as a lower-dimensional

194 W. Zhu et al.

μi

…

D

…

D

encoder

decoder

μi σiRanking Loss

zi

 i

i

Node i

Parameter sharing

…

D

…

D

encoder

decoder

μj σj

sample εj

zj

 j

j

Node j

…

D

…

D

encoder

decoder

μk σk

sample εk

zk

 k

k

Node k

sample εi

Fig. 7 The framework of DVNE, figure from [73]

Gaussian distribution embedding for node vi , where μi ∈ R
L , �i ∈ R

L×L . L stands
for the embedding dimension, satisfying L � N .

5.2 The DVNE Model

The DVNE model proposed by Zhu et al. [73] is discussed in this section. The
framework of DVNE is shown in Fig. 7.

5.2.1 Similarity Measure

For purpose of supporting network applications, a suitable similarity measure need
to be defined between two node latent representations. In DVNE, distributions are
adopted to model latent representations, thus the similarity measure here is supposed
to be capable of measuring the similarities among different distributions. Moreover,
the similarity measure is supposed to also simultaneously preserve the transitivity
among nodes, since it is a crucial property of networks. Wasserstein distance is such
an adequate candidate capable of measuring the similarity between two distribu-
tions and satisfying the triangle inequality simultaneously [13], which guarantees its
capability of preserving the transitivity of similarities among nodes.

Deep Learning for Learning Graph Representations 195

The definition of the pthWasserstein distance between two probability measures
ν and μ is

Wp(ν,μ)p = inf E
[
d(X,Y)p

]
, (34)

where E[Z] stands for the expectation of a random variable Z and inf stands for the
infimum taken over all the joint distributions of the random variables X and Y , the
marginals of which are ν and μ respectively.

Furthermore, it has been proved that the pthWasserstein distance can preserve all
properties of a metric when p ≥ 1 [2]. The metric should satisfy the non-negativity,
the symmetry, the identity of indiscernibles and the triangle inequality [10]. In such
ways, Wasserstein distance meets the requirement of being a similarity measure for
the latent node representations, peculiarly for an undirected network.

Although the computational cost of general-formed Wasserstein distance, which
causes the limitation, a closed form solution can be achievedwith the 2thWasserstein
distance (abbreviated as W2) since Gaussian distributions are used in DVNE for the
latent node representations. This greatly reduces the computational cost.

More specifically, DVNE employs the following formula to calculateW2 distance
between two Gaussian distributions [25]:

dist = W2(N (μ1, �1),N (μ2, �2))

dist2 = ‖μ1 − μ2‖22 + Tr(�1 + �2 − 2(�1/2
1 �2�

1/2
1)1/2)

(35)

Furthermore, theW2 distance (a.k.a root mean square bipartite matching distance)
has been popularly applied in computer graphics [9, 19], computer vision [8, 14] and
machine learning [15, 16], etc. DVNE adopts diagonal covariance matrices,4 thus
�1�2 = �2�1. In the commutative case, the formula (35) can be simplified as

W2
(N (μ1, �1);N (μ2, �2)

)2 = ‖μ1 − μ2‖22 + ‖�1/2
1 − �

1/2
2 ‖2F . (36)

According to the above equation, the time complexity of computing W2 distance
between two nodes in latent embedding space is linear to L , the dimension of embed-
ding.

5.2.2 Loss Functions

First, the first-order proximity needs to be preserved. Intuitively, each node connected
with vi is supposed to be of smaller distance to vi in the embedding space compared to
the nodes that have no edges linking vi . More specifically, to preserve the first-order
proximity, the following pairwise constraints is satisfied by DVNE:

W2(hi ,h j) < W2(hi ,hk),∀vi ∈ V,∀v j ∈ Nbrsi ,∀vk /∈ Nbrsi . (37)

4When the covariance matrices are not diagonal, Wang et al. propose a fast iterative algorithm (i.e.,
BADMM) to solve the Wasserstein distance [70].

196 W. Zhu et al.

The smaller the W2 distance, the more similar between nodes. An energy based
learning approach [40] is used here to satisfy all pairwise constraints which are
defined above. The following equation presents the mathematical objective function,
with W2(hi ,h j) standing for the energy between two nodes, Ei j = W2(hi ,h j).

L1 =
∑

(i, j,k)∈D
(Ei j

2 + exp(−Eik)), (38)

where D stands for the set of all valid triplets given in Eq. (37). Therefore, ranking
errors are penalized by the energy of the pairs in this objective function, making the
energy of negative examples be higher than that of positive examples.

In order to preserve second-order proximity, transition matrix P is adopted as the
input feature ofWassersteinAuto-Encoders (WAE) [64] to preserve theneighborhood
structure and the mathematical relevance of mean vectors and variance terms is also
implied. More specifically, P(i, :) demonstrates the neighborhood structure of node
vi , and is adopted as the input feature for node vi to preserve its neighborhood
structure. The objective of WAE contains the reconstruction loss and the regularizer,
where the former loss helps to preserve neighborhood structure and latter guides the
encoded training distribution to match the prior distribution. Let PX denotes the data
distribution, and PG denotes the encoded training distribution, then the goal of WAE
is minimizingWasserstein distance between PX and PG . The reconstruction cost can
be written as

DWAE (PX , PG) = inf
Q(Z |X)∈Q

EPXEQ(Z |X)

[
c(X,G(Z))

]
, (39)

where Q stands for the encoders and G represents the decoders, X ∼ PX and
Z ∼ Q(Z |X). According to [64], Eq. (39) minimizes the W2 distance between PX

and PG with c(x, y) = ‖x − y‖22. Taking the sparsity of transition matrix P into con-
sideration, DVNE is centered on non-zero elements in P to accelerate the training
process. Therefore, the loss function for preserving the second-order proximity can
be defined as follows.

L2 = inf
Q(Z |X)∈Q

EPXEQ(Z |X)

[‖X◦(X − G(Z))‖22
]
, (40)

where ◦ denotes the element-wise multiplication. The transition matrix P is used as
the input feature X in DVNE. The second-order proximity is then preserved by the
reconstruction process through forcing nodes with similar neighborhoods to have
similar latent representations.

For purpose of simultaneously preserving the first-order proximity and second-
order proximity of networks, DVNE jointly minimizes the loss function of Eqs. (38)
and (40) by combining them together:

L = L1 + αL2. (41)

Deep Learning for Learning Graph Representations 197

5.2.3 Optimization

Optimizing objective function (38) in large graphs is computationally expensive,
which needs to compute all the valid triplets in D. Hence, we uniformly sample
triplets fromD, replacing

∑
(i, j,k)∈D withE(i, j,k)∼D in Eq. (38).M triplets are sampled

in each iteration from D to compute the estimation of gradient.
Z in objective function (40) is sampled from Q(Z |X), which is a non-continuous

operation without gradient. Similar to Variational Auto-Encoders (VAE) [21], the
“reparameterization trick” is used here for the optimization of the above objective
function via the deep neural networks. Firstly, we sample ε ∼ N (0, I). Then, we
can calculate Z = μ(X) + �1/2(X) ∗ ε. Consequently, the objective function (40)
becomes deterministic and continuous in the parameter spaces of encoders Q and
decoders G, given a fixed X and ε, which means the gradients can be computed by
backpropagation in deep neural networks.

5.2.4 Complexity Analysis

Algorithm 4 lists each step of DVNE. The complexity of gradient computation and
parameters updating during the training procedure is O(T ∗ M ∗ (daveS + SL + L)),
where T is the number of iterations, M stands for the number of edges, dave rep-
resents the average degree of all nodes, L stands for the dimension of embedding
vectors and S represents the size of hidden layer. Because only non-zero elements
in xi are reconstructed in DVNE, the computational complexity of the first and last
hidden layers is O(daveS), while that of other hidden layers is O(SL). In addition,
computation of the W2 distance among distributions takes O(L). In experiments,
convergence can be achieved with a small number of iterations T (e.g., T ≤ 50).

Algorithm 4 DVNE Embedding
Require: The network G = {V,E} with the transition matrix P, the parameter α
Ensure: Network embeddings {hi }Ni=1 and updated parameters θ = {W(i),b(i)}5i=1
1: Initialize parameters θ by xavier initialization
2: while L does not converge do
3: Uniformly sample M triplets from D
4: Split these triplets into a number of batches
5: Compute partial derivative ∂L/∂θ with backpropagation algorithm to update θ
6: end while

6 Dynamic-Aware Network Embedding

Despite the commendable success network embedding has achieved in tasks such as
classification and recommendation, most existing algorithms in the literature to date
are primarily designed for static networks, where all nodes are known before learn-

198 W. Zhu et al.

ing. However, for large-scale networks, it is infeasible to rerun network embedding
whenever new nodes arrive, especially considering the fact that rerunning network
embedding also results in the need of retraining all downstream classifiers. How to
efficiently infer proper embeddings for out-of-sample nodes, i.e., nodes that arrive
after the embedding process, remains largely unanswered.

Several graph-based methods in the literature can be adapted to infer out-of-
sample embeddings given in-sample ones. Many of them deduce embeddings of
new nodes by performing information propagation [74], or optimizing a loss that
encourages smoothness between linked nodes [20, 75]. There are also methods that
aim to learn a function mapping node features (e.g., text attributes, or rows of the
adjacency matrix when attributes are unavailable) to outcomes/embeddings, while
imposing a manifold regularizer derived from the graph [5]. The embeddings of
out-of-sample nodes can then be predicted based on their features by these methods.
Nevertheless, existing methods are facing several challenges. Firstly, the inferred
embeddings of out-of-sample nodes should preserve intricate network properties
with embeddings of in-sample nodes. For example, high-order proximity, among
many other properties, is deemed especially essential to be preserved by network
embedding [11, 48, 61], and thus must be reflected by the inferred embeddings.
Secondly, as downstream applications (e.g., classification) will treat in-sample and
out-of-sample nodes equally, the inferred embeddings and in-sample embeddings
should possess similar characteristics (e.g., magnitude, mean, variance, etc.), i.e.,
belong to a homogeneous space, resulting in the need of a model expressive enough
to characterize the embedding space. Finally,maintaining fast prediction speed is cru-
cial, especially considering the highly dynamic nature of real-world networks. This
final point is even more challenging due to the demand of simultaneously fulfilling
the previous two requirements.

To infer out-of-sample embeddings, Ma et al. [44] propose a Deeply Transformed
High-order Laplacian Gaussian Process (DepthLGP) approach (see Fig. 8) through

Fig. 8 Here v6, v7, and v8
are out-of-sample nodes.
Values of h(·) are latent
states. Values of shaded
nodes are learned during
training. To predict f(v7),
DepthLGP first predicts
h(v7) via probabilistic
inference, then passes h(v7)

through a neural network to
obtain f(v7), figure
from [44]

Deep Learning for Learning Graph Representations 199

combining nonparametric probabilistic modeling with deep neural networks. More
specifically, they first design a high-order Laplacian Gaussian process (hLGP) prior
with a carefully constructed kernel that encodes important network properties such
as high-order proximity. Each node is associated with a latent state that follows the
hLGP prior. They then employ a deep neural network to learn a nonlinear transfor-
mation function from these latent states to node embeddings. The introduction of
a deep neural network increases the expressive power of our model and improves
the homogeneity of inferred embeddings with in-sample embeddings. Theories on
the expressive power of DepthLGP are derived. Overall, their proposed DepthLGP
model is fast and scalable, requiring zero knowledge of out-of-sample nodes during
training process. The prediction routine revisits the evolved network rapidly and can
produce inference results analytically with desirable time complexity linear with the
number of in-sample nodes. DepthLGP is a general solution, in that it is applicable
to embeddings learned by any network embedding algorithms.

6.1 The DepthLGP Model

In this section, we first formally formulate the out-of-sample node problem, and then
discuss the DepthLGP model as well as theories on its expressive power.

6.1.1 Problem Definition

DepthLGP primarily considers undirected networks. Let G be the set of all possible
networks and V be the set of all possible nodes. Given a specific network G =
(V, E) ∈ Gwith nodesV = {v1, v2, . . . , vn} ⊂ V and edges E , a network embedding
algorithm aims to learn values of a function f : V → R

d for nodes in V . As the
network evolves over time, a batch of m new nodes V ∗ = {vn+1, vn+2, . . ., vn+m} ⊂
V \ V arrives, and expands G into a larger network G ′ = (V ′, E ′), where V ′ =
V ∪ V ∗. Nodes in V ∗ are called out-of-sample nodes. The problem, then, is to infer
values of f(v) for v ∈ V ∗, given G ′ = (V ′, E ′) and f(v) for v ∈ V .

6.1.2 Model Description

DepthLGP first assumes that there exists a latent function h : V → R
s , and the

embedding function f : V → R
d is transformed from the said latent function. To

be more specific, let g : Rs → R
d be the transformation function. DepthLGP then

assumes that f(v) = g(h(v)) for all v ∈ V . Since the transformation can poten-
tially be highly nonlinear, the authors use a deep neural network to serve as g(·).
DepthLGP further assumes that the s output dimensions of h(·), i.e. hk : V → R

200 W. Zhu et al.

for k = 1, 2, . . . , s, can be modeled independently. In other words, DepthLGP deals
with each hk(v) of h(v) = [

h1(v), h2(v), . . . , hs(v)
]�

separately.
Let us focus on hk(·) for the moment. Each hk(·) is associated with a kernel

that measures similarity between nodes of a network. Take G ′ = (V ′, E ′) with
V ′ = {v1, v2, . . . , vn+m} for example, the said kernel produces a kernel matrix
Kk ∈ R

(n+m)×(n+m) for G ′:

Kk �
[
I + ηkL(Âk) + ζkL(ÂkÂk)

]−1
,

Âk � diag(αk)A′diag(αk),

αk � [a(k)
v1

, a(k)
v2

, . . . , a(k)
vn+m

]�,

where A′ is the adjacency matrix of G ′, while ηk ∈ [0,∞), ζk ∈ [0,∞) and a(k)
v ∈

[0, 1] for v ∈ V are parameters of the kernel. diag(·) returns a diagonal matrix cor-
responding to its vector input, while L(·) treats its input as an adjacency matrix and
returns the corresponding Laplacian matrix, i.e., L(A) = diag(

∑
i A:,i) − A.

The parameters of the proposed kernel have clear physical meanings. ηk indicates
the strength of first-order proximity (i.e., connected nodes are likely to be similar),
while ζk is for second-order proximity (i.e., nodes with common neighbors are likely
to be similar). On the other hand, a(k)

v represents a node weight, i.e., how much
attention we should pay to node v when conducting prediction. Values of a(k)

v for
in-sample nodes (v ∈ V) are learned along with ηk and ζk (as well as parameters
of the neural network g(·)) during training, while values of a(k)

v for out-of-sample
nodes (v ∈ V ∗) are set to 1 during prediction, since we are always interested in these
new nodes when inferring embeddings for them. Node weights help DepthLGP
avoid uninformative nodes. For example, in a social network, this design alleviates
harmful effects of “bot” users that follow a large amount of random people and spam
uninformative contents.

It is easy to see thatKk is positive definite, hence a valid kernel matrix. The kernel
in DepthLGP can be seen as a generalization of the regularized Laplacian kernel [57],
in that the authors further introduce node weighting and a second-order term. This
kernel is referred as the high-order Laplacian kernel.

DepthLGP assumes that each sub-function hk(·) follows a zero mean Gaus-
sian process (GP) [51] parameterized by the high-order Laplacian kernel, i.e.,
hk ∼ GP (k)

hLap. This is equivalent to say that: For any Gt = (Vt , Et) ∈ G with

Vt = {v(t)
1 , v

(t)
2 , . . . , v(t)

nt } ⊂ V , we have

[hk(v(t)
1), hk(v

(t)
2), . . . , hk(v

(t)
nt)]� ∼ N (0,K(t)

k),

whereK(t)
k is the corresponding high-order Laplacian kernel matrix computed onGt .

Deep Learning for Learning Graph Representations 201

The DepthLGP model can be summarized as follows.

hk ∼ GP (k)
hLap, k = 1, 2, . . . , s,

h(v) � [h1(v), h2(v), . . . , hs(v)]�, v ∈ V,

f(v) | h(v) ∼ N (g(h(v)),σ2I), v ∈ V.

where σ is a hyper-parameter to be manually specified. The neural network g(·) is
necessary here, since f(·) itself might not follow the GP prior exactly. The introduc-
tion of g(·) allows the model to fit f(·) more accurately.

6.1.3 Prediction

Before new nodes arrive, we have the initial network G = (V, E) with V =
{v1, v2, . . . , vn}, and know the values of f(v) for v ∈ V . The prediction routine
assumes that there is a trainingprocedure (seeSect. 6.1.4) conductedonG and f(v) for
v ∈ V before new nodes arrive, and the training procedure learns ηk, ζk, hk(v), a(k)

v

for k = 1, 2, . . . , s and v ∈ V , as well as parameters of the transformation function
g(·).

As the network evolves over time, m new nodes V ∗ = {vn+1, vn+2, . . ., vn+m}
arrive and G evolves into G ′ = (V ′, E ′) with V ′ = V ∪ V ∗. DepthLGP’s prediction
routine aims to predict f(v) for v ∈ V ∗ by maximizing p({f(v) : v ∈ V ∗} | {f(v) :
v ∈ V }, {h(v) : v ∈ V }), which, according to our model, is equal to

p({f(v) : v ∈ V ∗} | {h(v) : v ∈ V }).

Yet, it requires integrating over all possible h(v) for v ∈ V ∗. DepthLGP therefore
approximates it by maximizing

p({f(v) : v ∈ V ∗}, {h(v) : v ∈ V ∗} | {h(v) : v ∈ V }),

which is equal to

p({f(v) : v ∈ V ∗} | {h(v) : v ∈ V ∗})
× p({h(v) : v ∈ V ∗} | {h(v) : v ∈ V }).

It can be maximized5 by first maximizing the second term, i.e. p(h(v) : v ∈
V ∗} | {h(v) : v ∈ V }) = ∏s

k=1 p({hk(v) : v ∈ V ∗} | {hk(v) : v ∈ V }), and then set-
ting f(v) = g(h(v)) for v ∈ V ∗.

5Note that the first term p({f(v) : v ∈ V ∗} | {h(v) : v ∈ V ∗}) is maximized with f(v) = g(h(v)),
and the maximum value of this probability density is a constant unrelated with h(v). Hence we can
focus on maximizing the second term first.

202 W. Zhu et al.

Algorithm 5 DepthLGP’s Prediction Routine
Require: G ′ = (V ′, E ′) � G = (V, E) evolves into G ′.
Ensure: predicted values of f(v), v ∈ V ∗ � V ∗ � V ′ \ V .
1: � Let V = {v1, v2, . . . , vn} be old nodes.
2: � Let V ∗ = {vn+1, vn+2, . . . , vn+m} be new nodes.
3: � Let A′ be the adjacency matrix of G ′.
4: for k = 1, 2, . . . , s do
5: � Values of a(k)

v are set to 1 for v ∈ V ∗.
6: α ← [a(k)

v1 , a(k)
v2 , . . . , a(k)

vn+m]�
7: Â ← diag(α) A diag(α)

8: � Function L(·) below treats Â and ÂÂ as adjacency matrices, and returns their Laplacian
matrices.

9: M ← I + ηkL(Â) + ζkL(ÂÂ)

10: M∗,∗ ← the bottom-right m × m block of M
11: M∗,x ← the bottom-left m × n block of M
12: � Let z(k)

x � [hk(v1), hk(v2), . . . , hk(vn)]�.
13: � ComputeM∗,xz

(k)
x first below for efficiency.

14: z(k)∗ ← −M−1∗,∗M∗,xz
(k)
x � z(k)∗ is a prediction of [hk(vn+1), hk(vn+2), . . . , hk(vn+m)]�.

15: end for
16: for v ∈ V ∗ do
17: � Previous lines have produced a prediction of h(v) = [h1(v), h2(v), . . . , hs(v)]�. The line

below now uses the said prediction to further predict f(v).
18: compute g(h(v)) � It is a prediction of f(v).
19: end for

Let us now focus on the subproblem, i.e., maximizing

p({hk(v) : v ∈ V ∗} | {hk(v) : v ∈ V }). (42)

Since hk ∼ GPhLap, by definition we have

[hk(v1), hk(v2), . . . ,hk(vn), hk(vn+1), . . . , hk(vn+m)]�
∼ N (0,Kk),

where Kk is the corresponding kernel matrix computed on G ′. We then have the
following result:

z(k)
∗ | z(k)

x ∼ N (K∗,xK−1
x,xz

(k)
x ,K∗,∗ − K∗,xK−1

x,xK
�
∗,x),

z(k)
x �

[
hk(v1), hk(v2), . . . , hk(vn)

]�
,

z(k)
∗ �

[
hk(vn+1), hk(vn+2), . . . , hk(vn+m)

]�
,

where Kx,x , K∗,x , and K∗,∗ are respectively the top-left n × n, bottom-left m × n,
and bottom-rightm × m blocks ofKk . ThoughK∗,xK−1

x,xz
(k)
x is expensive to compute,

it can thankfully be proved to be equivalent to −M−1∗,∗M∗,xz(k)
x , whereM∗,x andM∗,∗

are respectively the bottom-left m × n and bottom-right m × m blocks ofK−1
k .K−1

k

Deep Learning for Learning Graph Representations 203

is cheap to obtain as the matrix inversion gets cancelled out. And computingM−1∗,∗ is
fast, since m � n. As a result, Eq. (42) is maximized as:

z(k)
∗ = −M−1

∗,∗M∗,xz(k)
x .

As a side node, maximizing Eq. (42) is in fact equivalent to minimizing the
following criterion:

∑

u∈V ′
[hk(u)]2 +

1

2
ηk

∑

u,v∈V ′
a(k)
u A′

uva
(k)
v [hk(u) − hk(v)]2 +

1

2
ζk

∑

u,v,w∈V ′
a(k)
u A′

uwa
(k)
w a(k)

w A′
wva

(k)
v [hk(u) − hk(v)]2 ,

where A′
uv is the edge weight (zero if not connected) between u and v in G ′. This

form hints at the physical meanings of η, ζ and a(k)
v from another perspective.

The prediction routine is summarized in Algorithm 5.

6.1.4 Training

Training is conducted on the initial network, i.e.,G = (V, E), with the values of f(v)

for v ∈ V . Since it does not depend on the evolved network G ′ = (V ′, E ′), it can be
carried out before new nodes arrive. It aims to find suitable parameters of the neural
network g(·) and proper values of ηk, ζk, a(k)

v , hk(v) for v ∈ V and k = 1, 2, . . . , s.
The authors apply empirical minimum risk (ERM) training to DepthLGP model.

ERM training of a probabilistic model, though not as conventional as maximum
likelihood estimation (MLE) and maximum a posteriori (MAP) estimation, has been
explored by many researchers before, e.g., [59]. Using ERM training here elimi-
nates the need to specify σ, and is faster and more scalable as it avoids computing
determinants.

The training procedure is listed in Algorithm 6. The basic idea is to first sample
some subgraphs from G, then treat a small portion of nodes in each subgraph as
if they were out-of-sample nodes, and minimize empirical risk on these training
samples (i.e., minimize mean squared error of predicted embeddings).

Now let us describe how each training sample, G ′
t = (V ′

t , E
′
t), is sampled.

DepthLGP first samples a subset of nodes, V ∗
t , from G, along a random walk path.

Nodes in V ∗
t are treated as “new” nodes. DepthLGP then samples a set of nodes,

Vt , from the neighborhood of V ∗
t . DepthLGP defines the neighborhood of V ∗

t to be
nodes that are no more than two steps away from V ∗

t . Finally, let V
′
t = V ∗

t ∪ Vt , and
G ′

t be the subgraph induced in G by V ′
t .

204 W. Zhu et al.

Optimization is be done with a gradient-based method and the authors use
Adam [36] for this purpose. Gradients are computed using back-propagation [22,
53]. Good parameter initialization can substantially improve convergence speed. To
allow easy initialization, they use a residual network (more strictly speaking, a resid-
ual block) [28] to serve as g(·). In other words, DepthLGP chooses g(·) to be of
the form g(x) = x + g̃(x), where g̃(·) is a feed-forward neural network. In this case,
s = d. Thus it is able to initialize values of h(v) to be values of f(v) for nodes in V .

6.1.5 On the Expressive Power of DepthLGP

Theorem 4 below demonstrates the expressive power of DepthLGP, i.e., to what
degree it can model arbitrary f : V → R

d .

Theorem 4 (Expressive Power) For any ε > 0, any nontrivial G = (V, E) and any
f : V → R

d , there exists a parameter setting for DepthLGP, such that: For any
v∗ ∈ V , after deleting all information (except G) related with v∗, DepthLGP can
still recover f(v∗) with error less than ε, by treating v∗ as a new node and using
Algorithm 5 on G.

Remark AnontrivialG means that all connected components ofG have at least three
nodes. Information relatedwith v∗ includes f(v∗), hk(v∗) and a(k)

v∗ for k = 1, 2, . . . , s
(note that during prediction, a(k)

v∗ is replaced by 1 since v∗ is treated as a new node).
Error is expressed in terms of l2-norm. It can be proved with a constructive proof
based on the universal approximation property of neural networks [17, 33].

Algorithm 6 DepthLGP’s Training Routine
Require: G = (V, E); f(v) for v ∈ V
Ensure: ηk , ζk , a

(k)
v , hk(v) for v ∈ V and k = 1, 2, . . . , s; parameters of the neural network g(·)

1: for t = 1, 2, . . . , T do
2: � See Sect. 6.1.4 for more details on how to sample V ∗

t and Vt .
3: V ∗

t ← a few nodes sampled along a random walk
4: Vt ← some nodes in V ∗

t ’s neighborhood
5: V ′

t ← Vt ∪ V ∗
t

6: G ′
t ← the subgraph induced in G by V ′

t
7: Execute Algorithm 5, but using G ′

t in place of G ′, Vt in place of old nodes, and V ∗
t in place

of new nodes. Save its prediction of f(v) as f̃(v) for v ∈ V ∗
t .

8: loss ← 1
|V ∗

t |
∑

v∈V ∗
t

‖f(v) − f̃(v)‖2
l2

9: Use back-propagation to compute the gradient of the loss with respect to ηk , ζk , a
(k)
v , hk(v)

for v ∈ Vt and parameters of g(·).
10: Apply gradient descent.
11: end for

Deep Learning for Learning Graph Representations 205

Theorem 5 below then emphasizes the importance of second-order proximity:
Even though DepthLGP leverages the expressive power of a neural network, mod-
eling second-order proximity is still necessary.

Theorem 5 (On Second-Order Proximity) Theorem 4 will not hold if DepthLGP
does not model second-order proximity. That is, there will exist G = (V, E) and
f : V → R

d that DepthLGP cannot model, if ζk is fixed to zero.

6.2 Extensions and Variants

6.2.1 Integrating into an Embedding Algorithm

DepthLGP can also be easily incorporated into an existing network embedding algo-
rithm to derive a new embedding algorithm capable of addressing out-of-sample
nodes. Take node2vec [27] for example. For an input network G = (V, E) with
V = {v1, . . . , vn}, node2vec’s training objective can be abstracted as

min
θ,F

Lθ(F,G),

where columns ofF ∈ R
d×n are target node embeddings to be learned, and θ contains

parameters other than F.
Let us use fφ : V → R

d to represent a function parameterized by φ. This function
is defined as follows. For v ∈ V , it first samples nodes from v’s neighborhood (see
Sect. 6.1.4 on how to sample them) and induces a subgraph from G containing v

and these sampled nodes. It then treats v as a new node, nodes sampled from v’s
neighborhood as old nodes, and runs Algorithm 5 on the induced subgraph to obtain
a prediction of v’s embedding—this is the value of fφ(v). By definition, φ contains
parameters of a neural network, ηk, ζk , a(k)

v , and hk(v) for v ∈ V , k = 1, 2, . . . , s.
To derive a new embedding algorithm based on node2vec, we can simply change the
training objective to:

min
θ,φ

Lθ([fφ(v1), fφ(v2), . . . , fφ(vn)],G).

The authors name this new algorithm node2vec++, where fφ(v) is node v’s embed-
ding. Clearly, node2vec++ can handle out-of-sample nodes efficiently in the same
fashion as DepthLGP.

6.2.2 Efficient Variants

When predicting node embeddings for out-of-sample nodes, DepthLGP can collec-
tively infer all of them in one pass. However, if the number of newly arrived nodes

206 W. Zhu et al.

is large, it is more efficient (and more memory-saving) to process new nodes in a
batch-by-batch way: For each unprocessed new node v, find the largest connected
component containing v and other new nodes (but not old nodes). Let V ∗

t be nodes
in the connected component, and Vt be old nodes sampled from V ∗

t ’s neighborhood
(see Sect. 6.1.4 on how to sample them). Then it is possible to run Algorithm 5 on
the subgraph induced by V ∗

t ∪ Vt to obtain prediction for new nodes in V ∗
t . Repeat

this process until all new nodes are processed.
Some simplifications can be made to DepthLGP without sacrificing much per-

formance while allowing faster convergence and a more efficient implementation
of Algorithm 5. In particular, sharing node weights across different dimensions, i.e.
keeping a(1)

v = . . . = a(s)
v , hurts little for most mainstream embedding algorithms

(though theoretically it will reduce the expressive power of DepthLGP). Similarly,
for node2vec and DeepWalk, we can keep η1 = . . . = ηs and ζ1 = . . . = ζs , since
they treat different dimensions of node embeddings equally. For LINE, however, it is
better to keepη1 = . . . = η s

2
(ζ1 = . . . = ζ s

2
) andη s

2 +1 = . . . = ηs (ζ s
2 +1 = . . . = ζs)

separately, because an embedding produced by LINE is the result of concatenating
two sub-embeddings (for 1st- and 2nd-order proximity respectively).

7 Conclusion and Future Work

This chapter introduces the problem of graph representation/network embedding
and the challenges lying in the literature, i.e., high non-linearity, structure-preserving,
property-preserving and sparsity. Given its success in handling large-scale non-linear
data in the past decade,we remark that deep neural network (i.e., deep learning) serves
as an adequate candidate to tackle these challenges and highlight the promising
potential for combining graph representation/network embedding with deep neural
network. We select five representative models on deep network embedding/graph
representation for discussions, i.e., structural deep network embedding (SDNE),
deep variational network embedding (DVNE), deep recursive network embedding
(DRNE), deeply transformed high-order Laplacian Gaussian process (DepthLGP)
based network embedding and deep hyper-network embedding (DHNE). In particu-
lar, SDNE and DRNE focus on structure-aware network embedding, which preserve
the high order proximity and global structure respectively. By extending vertex pairs
to vertex tuples, DHNE targets at learning embeddings for vertexes with various
types in heterogeneous hyper-graphs and preserving the corresponding hyper struc-
tures. DVNE focuses on the uncertainties in graph representations and DepthLGP
aims to learn accurate embeddings for new nodes in dynamic networks. Our dis-
cussions center around two aspects in graph representation/network embedding (i)
deep structure-oriented network embedding and (ii) deep property-oriented network
embedding. We hope that readers may benefit from our discussions.

The above discussions of the state-of-the-art network embedding algorithms
highly demonstrate that the research field of network embedding is still young and
promising. Selecting appropriate methods is a crucial question for tackling practical

Deep Learning for Learning Graph Representations 207

applications with network embedding. The foundation here is the property and struc-
ture preserving issue. Serious information in the embedding space may lost if the
important network properties cannot be retained and the network structure cannot be
well preserved, which damages the analysis in the sequel. The off-the-shelf machine
learning methods can be applied based on the property and structure preserving
network embedding. Available side information can be fed into network embed-
ding. Moreover, for some certain applications, the domain knowledge can also be
introduced as advanced information. At last, existing network embedding methods
are mostly designed for static networks, while not surprisingly, many networks in
real world applications are evolving over time. Therefore, novel network embedding
methods to deal with the dynamic nature of evolving networks are highly desirable.

Acknowledgements We thank Ke Tu (DRNE and DHNE), Daixin Wang (SDNE), Dingyuan Zhu
(DVNE) and Jianxin Ma (DepthLGP) for providing us with valuable materials.
Xin Wang is the corresponding author. This work is supported by China Postdoctoral Science
Foundation No. BX201700136, National Natural Science Foundation of China Major Project No.
U1611461 and National Program on Key Basic Research Project No. 2015CB352300.

References

1. Agarwal, S., Branson, K., Belongie S.: Higher order learning with graphs. In: Proceedings of
the 23rd International Conference on Machine Learning, pp. 17–24. ACM (2006)

2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: in Metric Spaces and in the Space of
Probability Measures. Springer Science & Business Media (2008)

3. Ba, J.L.Kiros, J.R.,Hinton,G.E.:Layer normalization (2016). arXivpreprint arXiv:1607.06450
4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data represen-

tation. Neural Comput. 15(6), 1373–1396 (2003)
5. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for

learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7, 2399–2434 (2006)
6. Bengio, Y.: Learning deep architectures for AI. Found. Trends® Mach. Learn. 2(1), 1–127

(2009)
7. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564

(2007)
8. Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced and radon wasserstein barycenters of

measures. J. Math. Imaging Vis. 51(1), 22–45 (2015)
9. Bonneel, N., Van De Panne, M., Paris, S., Heidrich, W.: Displacement interpolation using

lagrangian mass transport. ACM Trans. Graph. (TOG) 30, 158. ACM (2011)
10. Bryant, V.: Metric Spaces: Iteration and Application. Cambridge University Press (1985)
11. Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural informa-

tion. In: CIKM ’15, pp. 891–900. ACM, New York (2015)
12. Chen, C., Tong, H.: Fast eigen-functions tracking on dynamic graphs. In: Proceedings of the

2015 SIAM International Conference on Data Mining, pp. 559–567. SIAM (2015)
13. Clement, P., Desch, W.: An elementary proof of the triangle inequality for the wasserstein

metric. Proc. Am. Math. Soc. 136(1), 333–339 (2008)
14. Courty, N., Flamary, R., Ducoffe, M.: Learning wasserstein embeddings (2017). arXiv preprint

arXiv:1710.07457
15. Courty,N., Flamary,R., Tuia,D.,Rakotomamonjy,A.:Optimal transport for domain adaptation.

IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2017)

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1710.07457

208 W. Zhu et al.

16. Cuturi, M., Doucet, A.: Fast computation of wasserstein barycenters. In: International Confer-
ence on Machine Learning, pp. 685–693 (2014)

17. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signal
Syst. 2(4), 303–314 (1989)

18. Dash, N.S.: Context and contextual word meaning. SKASE J. Theor. Linguist. 5(2), 21–31
(2008)

19. De Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal trans-
port. ACM Trans. Graph. (TOG) 31(6), 171 (2012)

20. Delalleau, O., Bengio, Y., Roux, N.L.: Efficient non-parametric function induction in semi-
supervised learning. In: AISTATS ’05, pp. 96–103 (2005)

21. Doersch, C.: Tutorial on variational autoencoders (2016). arXiv preprint arXiv:1606.05908
22. Dreyfus, S.: The numerical solution of variational problems. J. Math. Anal. Appl. 5(1), 30–45

(1962)
23. Eom, Y.-H., Jo, H.-H.: Tail-scope: using friends to estimate heavy tails of degree distributions

in large-scale complex networks. Sci. Rep. 5 (2015)
24. Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., Bengio, S.: Why does

unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)
25. Givens, C.R., Shortt, R.M., et al.: A class of wasserstein metrics for probability distributions.

Mich. Math. J. 31(2), 231–240 (1984)
26. Glorot, X., Bordes, A., Bengio,Y.: Deep sparse rectifier neural networks. In: Proceedings of

the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323
(2011)

27. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD ’16, pp.
855–864. ACM, New York (2016)

28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv
preprint arXiv:1512.03385

29. Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.-R., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T.N., et al.: Deep neural networks for acoustic modeling in speech
recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–
97 (2012)

30. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006)

31. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

32. Holland, P.W., Leinhardt, S.: Holland and Leinhardt reply: some evidence on the transitivity
of positive interpersonal sentiment (1972)

33. Hornik, K.: Approximation capabilities ofmultilayer feedforward networks. NeuralNetw. 4(2),
251–257 (1991)

34. Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommen-
dation in social networks. In: Proceedings of the Fourth ACM Conference on Recommender
Systems, pp. 135–142. ACM (2010)

35. Jin, E.M., Girvan, M., Newman, M.E.: Structure of growing social networks. Phys. Rev. E
64(4), 046132 (2001)

36. Kingma, D., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv preprint
arXiv:1412.6980

37. Kolouri, S., Park, S.R., Thorpe, M., Slepcev, D., Rohde, G.K.: Optimal mass transport: signal
processing andmachine-learning applications. IEEE Signal Process. Mag. 34(4), 43–59 (2017)

38. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

39. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
40. LeCun,Y., Chopra, S., Hadsell, R., Ranzato,M., Huang, F.: A tutorial on energy-based learning.

Predict. Struct. Data 1 (2006)

http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1412.6980

Deep Learning for Learning Graph Representations 209

41. Leicht, E.A., Holme, P., Newman, M.E.: Vertex similarity in networks. Phys. Rev. E 73(2),
026120 (2006)

42. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc.
Inf. Sci. Technol. 58(7), 1019–1031 (2007)

43. Luo, D., Nie, F., Huang, H., Ding, C.H.: Cauchy graph embedding. In: Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pp. 553–560 (2011)

44. Ma, J., Cui, P., Zhu, W.: Depthlgp: learning embeddings of out-of-sample nodes in dynamic
networks. In: AAAI, pp. 370–377 (2018)

45. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network
based language model. In: Eleventh Annual Conference of the International Speech Commu-
nication Association, pp. 1045–1048 (2010)

46. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of
words and phrases and their compositionality. In: Advances in Neural Information Processing
Systems, pp. 3111–3119 (2013)

47. Nathan, E., Bader, D.A.: A dynamic algorithm for updating katz centrality in graphs. In:
Proceedings of the 2017 IEEE/ACM International Conference onAdvances in Social Networks
Analysis and Mining 2017, pp. 149–154. ACM (2017)

48. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embed-
ding. In: Proceedings of ACM SIGKDD, pp. 1105–1114 (2016)

49. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order
to the web. Technical report, Stanford InfoLab (1999)

50. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In:
SIGKDD, pp. 701–710. ACM (2014)

51. Rasmussen, C.E.,Williams, C.K.I.: Gaussian Processes forMachine Learning (Adaptive Com-
putation and Machine Learning). The MIT Press (2005)

52. Rossi, R.A., Ahmed, N.K.: Role discovery in networks. IEEE Trans. Knowl. Data Eng. 27(4),
1112–1131 (2015)

53. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: foundations of research. In:
Learning Representations by Back-Propagating Errors, pp. 696–699. MIT Press, Cambridge
(1988)

54. Salakhutdinov,R.,Hinton,G.: Semantic hashing. Int. J.Approx.Reason.50(7), 969–978 (2009)
55. Shaw, B., Jebara, T.: Structure preserving embedding. In: Proceedings of the 26th Annual

International Conference on Machine Learning, pp. 937–944. ACM (2009)
56. Siegelmann, H.T., Sontag, E.D.: On the computational power of neural nets. J. Comput. Syst.

Sci. 50(1), 132–150 (1995)
57. Smola, A.J., Kondor, R.: Kernels and Regularization on Graphs, pp. 144–158. Springer, Berlin

(2003)
58. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C.: Recursive

deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), vol. 1631, pp.
1642. Citeseer (2013)

59. Stoyanov,V., Ropson,A., Eisner, J.: Empirical riskminimization of graphicalmodel parameters
given approximate inference, decoding, andmodel structure. In:AISTATS’11, Fort Lauderdale,
April 2011

60. Sun, L., Ji, S., Ye, J.: Hypergraph spectral learning for multi-label classification. In: Proceed-
ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 668–676. ACM (2008)

61. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network
embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp.
1067–1077. International World Wide Web Conferences Steering Committee (2015)

62. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear
dimensionality reduction. Science 290(5500), 2319–2323 (2000)

63. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.-Y.: Learning deep representations for graph clus-
tering. In: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp.
1293–1299 (2014)

210 W. Zhu et al.

64. Tolstikhin, I., Bousquet, O., Gelly, S., Schoelkopf, B.:Wasserstein auto-encoders (2017). arXiv
preprint arXiv:1711.01558

65. Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding for hyper-networks.
In: Thirty-Second AAAI Conference on Artificial Intelligence, pp. 426–433 (2018)

66. Tu, K., Cui, P., Wang, X., Yu, P.S., Zhu, W.: Deep recursive network embedding with regular
equivalence. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 2357–2366. ACM (2018)

67. Vilnis, L.,McCallum,A.:Word representations via Gaussian embedding (2014). arXiv preprint
arXiv:1412.6623

68. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J.
Mach. Learn. Res. 11, 1201–1242 (2010)

69. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd
ACMSIGKDDInternationalConference onKnowledgeDiscovery andDataMining, pp. 1225–
1234. ACM (2016)

70. Wang, H., Banerjee, A.: Bregman alternating direction method of multipliers. In: Advances in
Neural Information Processing Systems, pp. 2816–2824 (2014)

71. Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proc. IEEE 78(10),
1550–1560 (1990)

72. Zang, C., Cui, P., Faloutsos, P., Zhu,W.: Long short memory process: modeling growth dynam-
ics ofmicroscopic social connectivity. In: Proceedings of the 23rdACMSIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 565–574. ACM (2017)

73. Zhu, D., Cui, P., Wang, D., Zhu,W.: Deep variational network embedding in wasserstein space.
In: Proceedings of the 24th ACMSIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 2827–2836. ACM (2018)

74. Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation.
Technical report (2002)

75. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and
harmonic functions. In: ICML’03, pp. 912–919. AAAI Press (2003)

76. Zhuang, J., Tsang, I.W., Hoi S.: Two-layer multiple kernel learning. In: International Confer-
ence on Artificial Intelligence and Statistics, pp. 909–917 (2011)

http://arxiv.org/abs/1711.01558
http://arxiv.org/abs/1412.6623

Deep Neural Networks for Corrupted
Labels

Ishan Jindal, Matthew Nokleby, Daniel Pressel, Xuewen Chen
and Harpreet Singh

Abstract The success of deep convolutional networks on image and text classifi-
cation and recognition tasks depends on the availability of large, correctly labeled
training datasets, but obtaining the correct labels for these gigantic datasets is very
difficult task. To deal with this problem, we describe an approach for learning deep
networks from datasets corrupted by unknown label noise. We append a nonlinear
noise model to a standard deep network, which is learned in tandemwith the parame-
ters of the network. Further,we train the network using a loss function that encourages
the clustering of training images. We argue that the non-linear noise model, while
not rigorous as a probabilistic model, results in a more effective denoising opera-
tor during backpropagation. We evaluate the performance of proposed approach on
image classification task with artificially injected label noise to MNIST, CIFAR-10,
CIFAR-100 and ImageNet datasets and on a large-scale Clothing 1M dataset with
inherent label noise. Further, we show that with the different initialization and the
regularization of the noise model, we can apply this learning procedure to text clas-
sification tasks as well. We evaluate the performance of modified approach on TREC
text classification dataset. On all these datasets, the proposed approach provides sig-
nificantly improved classification performance over the state of the art and is robust

I. Jindal (B) · M. Nokleby · X. Chen · H. Singh
Wayne State University, Detroit, MI, USA
e-mail: ishan.jindal@wayne.edu

M. Nokleby
e-mail: matthew.nokleby@wayne.edu

X. Chen
e-mail: xuewen.chen@wayne.edu

H. Singh
e-mail: hsingh1@wayne.edu

D. Pressel
Interactions Digital Roots, Ann Arbor, MI, USA
e-mail: dpressel@interactions.com

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_7

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_7&domain=pdf
mailto:ishan.jindal@wayne.edu
mailto:matthew.nokleby@wayne.edu
mailto:xuewen.chen@wayne.edu
mailto:hsingh1@wayne.edu
mailto:dpressel@interactions.com
https://doi.org/10.1007/978-3-030-31756-0_7

212 I. Jindal et al.

to the amount of label noise and the training samples. This approach is computation-
ally fast, completely parallelizable, and easily implemented with existing machine
learning libraries.

Keywords Label noise · Deep learning · Image classification · Text
classification · E-M style label denoising · Convolutional network

1 Introduction

The last decade has seen dramatic advances in image classification, image caption-
ing, object recognition, and more, owing mostly to deep convolutional neural net-
works (CNNs) trained on large, labeled datasets [1–4]. Researchers often benchmark
the performance of these algorithms on standard, curated datasets such as MNIST,
CIFAR, ImageNet, or MSCOCO [2, 5–7]. However, use of curated data sets elides
a crucial point: in practical datasets, labels are not always reliable. “Crowdsourced”
labels obtained from socialmedia or other non-expert sources are subject to error, and
in subjective tasks even humans or experts may disagree on the correct label. (For a
taxonomy of types and sources of label noise, see [8] and the references therein.) As
deep learning systems become more complex and are trained on even more massive
datasets, it becomes increasingly difficult to obtain clean labels. In this scenario, an
approach to learning that accounts for noisy labels is needed.

Zhu andWu [9] perform an extensive study on the effect of label noise on classifi-
cation performance of a classifier and find that noise in input features is less important
than noise in training labels.

In this work, we present a two-pronged approach for image classification tasks,
as shown in Fig. 1, to learning CNNs from training sets corrupted by label noise
having unknown statistics. The first prong is to augment the CNN architecture with a
nonlinearmodel for the label noise,which is learned during training.A challengewith

Fig. 1 Proposed architecture for learning deep CNNs from noisy labels. The learned noise model
act as a denosing operator while backpropagation

Deep Neural Networks for Corrupted Labels 213

this approach is that the model is underdetermined: when CNN outputs disagree with
the labels provided, it is not clearwhether theCNNshould update itsweights tomatch
the noisy labels or update the noise model to account for the possibility of incorrect
labels. The nonlinear model turns out to be particularly effective in handling these
situations. We show that the proposed model is actually non-rigorous as a transition
probability between clean and noisy labels; however, it results in a “denoising”
operator that better handles errors when training the CNN via backpropagation.
Because the noise model is not used at test time, learning an accurate and rigorous
noise model is less important than the impact of the noise model on CNN training.
The second prong is to augment the standard cross-entropy loss with a term that
encourages the CNN to cluster images in feature space. This allows the network to
learn from the natural clustering of the data, even when labels are unreliable.

We demonstrate the performance of the proposed approach on the MNIST,
CIFAR-10, CIFAR-100 and ImageNet datasets corrupted by label noise. On these
datasets, the proposed approach exhibits state-of-the-art performance in terms of
classification accuracy over a clean test set. The results show that the proposed
approach is scalable to a large number of image categories. The results are robust
to label noise, achieving near-optimum performance when there is little noise, and
maintaining classification accuracy as the label noise increases. We emphasize that
this robustness does not require knowledge of the label noise statistics or tuning of
hyperparameters. The performance of the proposed approach degrades gracefully as
the training size decreases, suggesting that it sufficiently regularizes the learning of
the combined noise and classification model. Indeed, in some cases the performance
is better when using fewer training samples, which suggests that the sample com-
plexity of the model is occasionally too high for the given dataset, in which case
regularization in the form of early stopping improves performance. Finally, we eval-
uate the proposed approach on Clothing 1M [10] dataset, consisting of 1M images
with noisy labels.

For the text classification task, the noise model prong is sufficient and we study
the effect of different initialization, regularization, and batch sizes when training
with noisy labels. We observe that proper initialization and regularization helps the
noise model learn to be robust to even extreme amounts of noise. Finally, we use
low-dimensional projections of the features of the training examples to understand
the effectiveness of the noise model.

The rest of the paper is organized as follows. First, we describe the label nosie in
detail in Sect. 2, and then we review the existing literature on this subject in Sect. 3.
Then, we describe the details of the proposed approach and its different components
in Sect. 4. Finally, in Sect. 5 we present experimental results on variety of image and
text classification datasets and conclude our work with future directions.

214 I. Jindal et al.

2 Label Noise

In label noise, the label of a training sample is swapped with the other label. We
define the label flip as when the label of a training sample is swapped with another
label within the dataset and the outlier, when the label of a training sample is swapped
with another label which is not present in the dataset. Label noise is explained in
Fig. 2, where the top row shows the training samples, middle row provides the true
labels associated with each image (in this work we assume that this knowledge is not
available to the classifier) and the last row represents the supplied unreliable training
labels, where red text denotes the label flips, green text denotes the correct labels
and highlighted red text denotes the outliers. These label swaps can be of different
types, for instance, it can be uniform, random or class-conditional label swaps. In
this work, we study the effects of uniform and random label flips on the performance
of the standard deep network.

The extraordinary performance of deep learning methods heavily depends on the
availability of tons of training data points. Though it is easy to obtain such a huge
amount of data points, it is challenging to get the associated correct labels. However,
getting labels for these many training samples is a very laborious task and often
prone to label noise such as labels flips, mislabeling, and outliers. One easy and
least expensive way is to get the annotations using search engines and/or from social
media sites. This yields to the poor quality of annotations and these poor quality
annotations are the source of label noise.

Though standard deep networks are robust to label noise to some extent, say 10–
15% of label noise, the performance degrades when the noise percentage is higher
than 15% as shown in Fig. 3. We plot the classification accuracy with respect to
the increasing label noise percentage in training dataset, where blue and orange
bars represents the classification accuracy when the labels are altered according to
uniform and random label noise respectively. For this experiment we alter the labels
of the Trec dataset according to uniform and random label noise and train a standard
text deep neural network model [11] (more information in Sect. 5 end-to-end. From
this plot, we can easily observe that the label noise has deteriorating effect on the

Fig. 2 Training datasets with corrupted labels

Deep Neural Networks for Corrupted Labels 215

Fig. 3 Classification results for Trec text classification dataset

performance of deep network and a significant performance drop can be seen at
70% label noise. Also, random label flipping further degrade the performance of the
network.

3 Relationship to Prior Work

This problem is closely related to semi-supervised and weakly-supervised learning,
for which there is an extensive body of work. We refer the reader to [12] for survey.

Previous work addresses the question of learnability when labels are binary and
label noise is i.i.d. and class-independent [13], and provides sample complexity
bounds in terms of the VC dimension for the 0–1 loss. More recently, [14] pro-
vides sample complexity bounds for more general loss functions, in terms of the
Rademacher complexity, for class-conditional label noise having known statistics.
The upshot of these works is that if labels are flipped with probability η, the sample
complexity increases roughly by a factor of 1/(1 − 2η)2. Equivalently, the gener-
alization error scales roughly as 1/(

√
n(1 − 2η)) instead of the usual

√
1/n. Other

possible solution to this problem includes estimation of the noise rate. A class con-
ditional estimator for estimating the noise rate is proposed in [15].

Earlier works consider label noise for general learning algorithms. For example,
[16] presents a method for learning a kernel-based classifier from noisy labels with
unknown statistics. Using an EM-style algorithm, their approach learns jointly a gen-
erative noise model and a classifier. Similarly, [17] employs an EM-style algorithm
to estimate the reliability of labels. Other techniques detect and discard samples with
anomalous labels [18] or relabel erroneous samples [19]. In a similar vein to [14], a
recent work shows that careful choice of the loss function leads to learning that is
provably robust to label noise [20].

Recently, authors have begun designing CNNs to deal with label noise for image
classification [21, 22]. In some of the approaches [23–25], a standard CNN is aug-

216 I. Jindal et al.

mented with a generative noise model that must be learned in tandem with the CNN
parameters. A joint optimization framework presented in [26] simultaneously learns
the parameters and estimates the true labels. As mentioned above, the augmented
model is underdetermined and must be regularized, else the network may choose
the identity as the noise transition matrix. Each of these works imposes a different
regularization term to encourage a non-trivial noise model: [23] imposes a cost on
the trace of the label noise transition probability matrix, whereas [24] uses Dropout
regularization. In [27], an unified distillation framework is proposed to learn CNN
from the noisy labels. This framework uses label relations in knowledge graphs and
a small clean dataset to learn a classifier from noisy labels. Reference [28] proposes
to train in parallel two neural networks, which weights are updated only when label
predictions disagree.

A number of works have attempted to address this problem of learning from cor-
rupted labels for deep networks. These approaches can be divided into two categories;
attempts to mitigate the effect of label noise using auxiliary clean data, and attempts
to learn directly from the noisy labels.

Presence of auxiliary clean data: This line of research exploits a small, clean dataset
to correct the corrupted labels. For instance, [27] learn a teacher network with clean
data to re-weight a noisy label with a soft label in the loss function. Similarly, [29]
use the clean data as a label correction network. One can use this auxiliary source
of information to do inference over latent clean labels [30]. Further, [31] models the
auxiliary trustworthiness of noisy image labels to alleviate the effect of label noise.
Though these methods show very promising results, the absence of clean data in
some situations might hinder the applicability of these methods.

Learning directly from noisy labels: This research directly learns from the noisy
labels by designing a robust loss function, or by modeling the latent labels. For
instance, [32], apply bootstrapping to the loss function to have consistent label pre-
diction for similar images. In a similar vein, [33] identifies and discards outliers in
order to fine-tune a pretrained CNN. Similarly, [34] alleviate the label noise effect
by adequately weighting the loss function using the sample number. Reference [35]
propose a sequential meta-learning model that takes in a sequence of loss values and
outputs the weights for the labels. Reference [36] further explores the conditions on
loss functions such that the loss function is noise tolerant.

A number of approaches learn the transition from latent labels to the noisy labels.
For example, [37] propose a noise adaptation framework for symmetric label noise.
Based on this work, several other works [23, 24, 38, 39] account for the label noise
by learning a noisy layer on top of a DNN where the learned transition matrix
represents the label flip probabilities. Similar to [14, 38] estimates a noise model
in a theoretical motivated manner during a pre-training phase of the network, and
then correct the loss function. It estimates the transition matrix heuristically but with
the large number of classes this estimation is not easy to obtain. On CIFAR-10,
[23] provides competitive performance as long as the label noise is not too strong.
Similarly, [10] propose a probabilistic image conditioned noise model. Reference
[33] proposed an image regularization technique to detect and discard the noisy

Deep Neural Networks for Corrupted Labels 217

labeled images. Other approaches include building two parallel classifiers [40] where
one classifier deals with image recognition and the other classifier models humans
reporting bias.

The proposed approach incorporates the spirit of [23, 24]—in that it learns an
explicit noise model—and clusters the data via an EM-style approach. The intuition
is to identify mislabeled images by their inconsistency with similar images, which
combats label noise and emulates unsupervised learning. The upshot of this work
is that a label noise model is beneficial, especially when it is regularized by an
unsupervised component in the loss function. However, learning a correct noise
model is neither necessary nor sufficient for state-of-the-art performance. Indeed,
the proposed approach uniformly outperforms a genie-aided CNN, similar to [24].
The proposed approach denoise the gradient of the loss by a denoising operator before
being fed into the gradient of the base model parameters. Our approach produces a
very diffuse denoising operator and thus prevents the base model from learning the
noisy label directly.

4 Proposed Approach

We consider the supervised learning of a classifier of d-dimensional images that
belong to one of L image classes. Let the (noise-free) training set be denoted by

D = {(x1, y1), (x2, y2), . . . , (xn, yn)},

where xi ∈ R
d is the i th image and yi ∈ {1, . . . , L} is its label, and where implicitly

there is an unknown joint distribution p(x, y) on the image/label pairs. Ideally, one
would train a classifier on the training set D, but we suppose that instead of access
to the noise-free training set D, we obtain a training set with unreliable labels. Let
this noisy training set be denoted by

D′ = {(x1, y′
1), (x2, y

′
2), . . . , (xn, y

′
n)},

where y′
i is a potentially erroneous label for xi . We suppose class-conditional label

noise, where the noisy label y′
i depends only on the true label yi , but not on the image

xi or any other labels y j or y′
j . Under thismodel, the label noise is characterized by the

conditional distribution p(y′|y), which we describe via the L × L column-stochastic
matrix φ, with

φi j = p(y′ = j |y = i).

We use a noise model parameterized by the overall probability of a label error,
denoted by 0 ≤ p ≤ 1:

φ = (1 − p)I + pΔ, (1)

218 I. Jindal et al.

where I is the identity matrix, and Δ is a matrix with zeros along the diagonal and
remaining entries of each column are drawn uniformly and independently from the
L − 1-dimensional unit simplex. That is, the label error probability for each class is
p, while the probability distribution within the erroneous classes is drawn uniformly
at random.

Our objective is to train a CNN, using the noisy set D′, that makes accurate
predictions of the true label y given an input image x . It is straightforward to train a
CNN that predicts the noisy labels. The conditional distribution for the noisy label
of the image x can be written as:

p(y′ = ŷ′|x) =
∑

i

p(y′ = ŷ′|y = ŷi)p(y = ŷi |x). (2)

One can learn the classifier associated with p(y′ = ŷ′|x) via standard training on
the noisy set D′. To predict the clean labels, i.e. to learn the conditional distribution
p(y = ŷi |x) requires more effort, as we cannot extract the “clean” classifier from
the noisy classifier when the label noise distribution is unknown.

4.1 Proposed Approach

The architecture of our proposed framework is shown in Fig. 4. We take a stan-
dard deep CNN—which we call the base model—and augment it with a model that
accounts for the label noise. The base and noise models are trained jointly using
D′ via stochastic gradient descent. The noise model is used only during training, in
which it effectively “denoises” the gradients associated with the noisy labels during
backpropagation in order to improve the learning of the base model. Because there
is no need to predict the noisy labels of test images, we disconnect the noise model
at test time and classify using the base model alone.

We stack an additional one fully-connected processing layer1 on top of base CNN
model. We lump the base model parameters—processing layer weights and biases,
etc.—into a parameter vectorΘ . The high-level features that the base model outputs,
which we denote via t1(x;Θ) ∈ R

L , are put through the usual softmax function:

σ(z)i = exp(zi)∑L
j=1 exp(zi)

to produce the conditional distribution of the clean label; i.e. p(y|x;Θ) = σ

(t1(x;Θ)), from which we can predict the clean label of an image x . A distinct
feature of the proposed approach is that we use a nonlinear transformation between
the estimate of the clean labels and the estimate of the noisy labels. In an abuse of

1We emphasize that the proposed framework can be applied to any CNN architecture.

Deep Neural Networks for Corrupted Labels 219

Fig. 4 The proposed framework

notation, let ŷ = σ(t1) denote the probabilities p(y|x;Θ). To obtain the probabilities
of the noisy labels, denoted ŷ′, we perform a softmax regression on ŷ:

p(y′|x;Θ,W) := σ(Wσ(t1(x;Θ))), (3)

where W ∈ R
L×L is a square matrix that governs the transition probabilities. We

emphasize a subtle point: This formulation is not rigorous probabilistically. Equation
(3) does not correctly compute marginal probability of the noisy labels according to
(2). To be consistent with the law of total probability, we should calculate conditional
distribution as

p(y′ = i |y = j;W) = [σ(Wej)]i , (4)

where e j is the j th elementary vector. From this conditional distribution, the distri-
bution on y′ should be

p(y′|x;Θ,W) = σ(W)σ (t1(x;Θ)), (5)

where σ(W) is the softmax function applied to each column ofW . This is equivalent
to the architecture used in [23], where a simple linear layer with column-stochastic
weightmatrix is learned, ideally tomatch thematrixφ that governs the label noise. By
taking a nonlinear transformation of ŷ, instead of a linear transformation associated
with transition probabilities, we violate the laws of probability in computing ŷ′. Nev-
ertheless, empirically we see that the resulting classifier has excellent performance,
and in the next part we give a justification for this approach.

Now, the challenge is to learn jointly the CNN parameters Θ and the nonlinear
noise model parametersW . One approach is to minimize the standard cross-entropy
loss of the end-to-end model, which we call the nonlinear noise-aware loss LNNA:

220 I. Jindal et al.

LNNA(Θ,W ;D′) = −1

n

n∑

i=1

log p(y′ = ŷ′
i |xi ;Θ,W)

= −1

n

n∑

i=1

log[σ(Wσ(t1(xi ;Θ)))]ŷi .

Empirically we see that this loss function leads to quite good predictions of the true
labels. However,LNNA does not directly encourage the model to predict correctly the
true label ŷ as the true label; instead, the prediction of ŷ is judged only indirectly via
the noisy label predictions ŷ′. Indeed, this approach treats ŷ as an additional hidden
layer that acts as an information bottleneck.

To encourage good predictions of ŷ, we need to feed ŷ into the loss func-
tion directly. To do so, we introduce an additional term that encourages a “quasi-
clustering” of the training images. Images that are close in feature space usually will
have the same label, a fact that we can exploit when dealing with noisy labels. We
penalize the cross-entropy between a linear combination of the predicted labels and
the noisy labels and the predicted labels themselves, i.e.

LQC(Θ;D′) = −1

n

n∑

i=1

(
βp(ŷi |xi ;Θ) + (1 − β)y′

i

) × log p(ŷi |xi ;Θ),

= −1

n

n∑

i=1

(β[σ(t1(x;Θ))]ŷi + (1− β)y′
i) × log[σ(t1(x;Θ))]ŷi .

This type of loss function has been used widely in the literature, such as in [32, 41,
42], and it has the effect of clustering the data. For a large value of β, minimizing
this loss function encourages ŷ toward a low-entropy vector, i.e. one with most of its
mass on a single point. In order to make such confident predictions, the CNN needs
to map similar output features to similar classes, which is equivalent to clustering.
Finally, we form the nonlinear, noise-aware, quasi-clustering loss, denoted L, by
taking a convex combination of the two losses:

LNNAQC(Θ,W ;D′) = αLNNA(Θ,W ;D′) + (1 − α)LQC(Θ;D′), (6)

and we minimize the NNAQC loss via standard back-propagation over the noisy
training set D′. We obtain the values of α and β via cross-validation.

For the text classification task, we find that the NNA step alone provides the state
of the art performance and we explore the effect of different initialization of the noise
model on the classification performance along with different regularizations. We use
the following loss function to train our network for text classification datasets.

Ltext(Θ,W ;D′) = −1

n

n∑

i=1

log[σ(Wσ(t1(xi ;Θ)))]ŷi + 1

2
λ||W ||22. (7)

Deep Neural Networks for Corrupted Labels 221

4.2 Justifying the Nonlinear Noise Model

In this section, we study the effect of the proposed nonlinear noise model. At first
instance, it seems that we are violating the basic laws of probability by adding a
nonlinear softmax layer at the output as described above. We emphasize, however,
that the role of the noise model is not to make accurate predictions of the noisy
labels, but to encourage the learning of a CNN that makes accurate predictions of
the clean labels instead of noisy ones. Therefore, the ultimate test of a noise model
is the extent to which it improves training. To that end, the proposed architecture is
designed not to learn an explicit noise model, but to learn a “denoising” operator that
effectively filters the gradients associated with the noisy labels. To see the benefits
of this approach, we examine the back-propagation gradient steps for the base model
parameters for the proposed architecture and for a CNN augmented with a standard
linear noise model.

In Fig. 5, we zoom in on the proposed approach architecture. For an input sample
x , we lump all the initial convolutional, ReLu and pooling layers into one function
f1(Θ, x) with parameters Θ , and we obtain the normalized prediction of true labels
ŷ via the first softmax layer σ(t1). We pass the clean label predictions through the
matrix W and take the softmax function to obtain the noise label distribution ŷ′.
To observe the effect of the prediction ŷ and the noise model parameters W on the
learning process, we write down the gradient of the loss function L with respect to
Θ:

∂L
∂Θ

= ∂L
∂ ŷ′

∂σ(t2)

∂t2

∂l1(ŷ,W)

∂ ŷ

∂σ(t1)

∂t1

∂ f1(Θ, x)

∂Θ
(8)

= ∂L
∂ ŷ′

(
∂σ(t2)

∂t2
W

∂σ(t1)

∂t1

)
∂ f1(Θ, x)

∂Θ
. (9)

For comparison, in Fig. 6 we consider a linear noise model as described in (4) and
(5), where the matrixW determines the noise model via the stochastic matrix σ(W).
We write the gradient steps similar to the previous case as:

∂L
∂Θ

= ∂L
∂ ŷ′

∂l1(ŷ, σ (W))

∂ ŷ

∂σ(t1)

∂t1

∂ f1(Θ, x)

∂Θ
(10)

= ∂L
∂ ŷ′

(
σ(W)

∂σ (t1)

∂t1

)
∂ f1(Θ, x)

∂Θ
. (11)

Fig. 5 Augmented linear layer with Softmax

222 I. Jindal et al.

Fig. 6 No softmax augmentation

Comparing (9) with (11) reveals a few crucial points. First of all, in each case
the gradient of the loss ∂L/∂ ŷ′ is “denoised” by an operator before being fed into
the gradient of the base model parameters. This is the main role of the noise model:
to prevent the base model from learning the noisy labels directly. In the case of the
proposed approach, the denoising operator is ∂σ (t2)

∂t2
W ∂σ (t1)

∂t1
, and in the case of the

linear noise model, the denoising operator is σ(W) ∂σ(t1)
∂t1

.

Second, we find that the proposed approach denoising operator is more diffuse
than the linear noise model. To see this, consider an estimate ŷ that places most of the
probability on a single class. In the proposed approach, the resulting noisy label pre-
diction is ŷ′ = σ(W ŷ); applying the softmax to W ŷ “spreads out” the probabilities,
and the prediction of the noisy label will be less concentrated on a single class than
the equivalent linear model. In other words, the nonlinear noise model is intrinsically
less confident than a rigorous linear model. Because the denoising operator contains
the term ∂σ (t2)

∂t2
, which is a function of σ(W ŷ), the resulting operator is more diffuse,

i.e. its columns are less concentrated on individual values.
A more diffuse operator allows for more flexibility in handling disagreements

between the CNNmodel predictions and the noisy labels. Consider the case in which
the CNN outputs a prediction ŷ concentrated around a single value (say, i) that is
different than the (perhaps erroneous) training label y′ (say, j). Here, the challenge
is to decide whether y′ is an error or whether the CNN prediction is bad. In a linear
noise model, the denoising operator has most of its weight concentrated on the i th
row. On the other hand, the loss gradient ∂L/∂ ŷ′ has all of its weight on the j th row.
Therefore, the denoising operator wipes out most of the gradient, and the result is
largely to ignore the sample. With the proposed approach, the denoising operator is
not as concentrated around row i , so the backpropagation step attempts to learn more
from the training point, even though the model prediction and noisy label disagree.

Similarly, the proposed approach prevents the model from being overconfident
when the model and noisy label agree. If the CNN makes a confident prediction
ŷ and i = j , the combination of a non-diffuse denoising operator and the gradient
∂L/∂ ŷ′ has large-magnitude elements, and the model is overconfident is supposing
that the label is not noisy. The diffuse denoising operator resulting from the proposed
approach, on the other hand, spreads out the gradient, preventing an over-aggressive
backpropagation step. To sum up, the proposed approach denoising operator encour-
ages the CNN to learn from a training sample when there is disagreement, and
discourages overfitting when there is agreement. Finally, the quasi-clustering regu-
larization in our approach in Fig. 4 provides information to base model about the true

Deep Neural Networks for Corrupted Labels 223

labels by clustering all the samples that are close in feature space. We also write the
backpropagation gradient steps with quasi-clustering regularization as

∂L
∂Θ

= γ
∂σ(t1)

∂t1

∂ f1(Θ, x)

∂Θ
(12)

where,

γ =
(

∂L
∂ ŷ′

∂σ(t2)

∂t2
W

)
+ ∂L′

QC

∂ ŷ
.

We also consider the learning performance when the noise model φ is known
exactly. One might expect that learning a base CNN using a linear noise model,
with the transition matrix set at φ, would provide superior performance. Somewhat
surprisingly, [24] reports cases where even this “genie-aided” approach is outper-
formed. We observe the similar behavior; augmenting the CNN with the true noise
model performs significantly worse than the proposed approach. As suggested by the
above analysis, the nonlinear noisemodel simply results in amore effective denoising
operator, even when the model does not learn the underlying noise statistics.

5 Experimental Results

In this Section, we evaluate the empirical performance of NNAQC on variety of
different image classification and text classification datasets and compare it with
other approaches.

5.1 General Setting

Image Classification Tasks In all the experiments, we use the MATLAB toolbox
MatConvNet [43]. We evaluate the performance of the classifier on the MNIST [44],
CIFAR-10, CIFAR-100 [6], ImageNet [7] and Clothing 1M [10] datasets. We use the
default CNN architectures and parameters provided in MatConvNet for CIFAR-10
and MNIST datasets as a base CNN model. For other datasets, we use the CNN
architectures that provide the best classification accuracy on corresponding clean
datasets and use it as a base CNN. We provide the details of these architectures in
subsequent sections. For all the NNAQC experiments we use α = 0.9 and β = 0.9.
We compare NNAQC to several other algorithms: a standard, noise-ignorant CNN
trained onD′ (“basemodel”); a CNN augmentedwith the true noisemodelφ (“genie-
aided”); the genie-aidedmodel using the quasi-clustering loss function (“genie-aided
with QC”); the dropout-regularized model of [24] (“dropout”); the trace-regularized
model of [23] (“trace”); the soft bootstrapping algorithm of [32] (“bootstrapping”);
and the forward loss correction of [38] (“F-correction”). We also try adding dropout

224 I. Jindal et al.

regularization to the noise model of NNAQC (“regu.NNAQC”). For an apples-to-
apples comparisonwefixed the basemodel for all the approaches and implement their
methods on top of it. In all the experiments we train CNN end-to-end via stochastic
gradient descent method with batch size 100. For CIFAR-10 and MNIST datasets,
we run the experiment 5 times for each setting and report the mean.

Text Classification Tasks For text classification experiments, we use a publicly-
available deep learning library Baseline—a fast model development tool for NLP
tasks [45]. We choose a commonly-used, high-performance model from [11] as a
base model and train according to (7). To examine the robustness of the proposed
approach, we intentionally flip the class labels with 0–70% label noise, in other
words: p ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, and observe the effect of
different types of label flipping, such as uniform (Uni) and random (Rand) label
flipping, along with instance-dependent label noise. For all the experiments, we use
early stopping based on validation set accuracy where the class labels in validation
are also corrupted.

We use the different name convention to show the effect of different regularizes
on the classification performance. We indicate the performance of a standard deep
network Without Noise model (WoNM) on the noisy label dataset. We also plot the
results for the stackedNoiseModelWithout Regularization (NMWoRegu) and stacked
Noise Model With Regularization (NMwRegu). Unless otherwise stated, in all the
deep networks with the stacked noise model, we initialize the noise layer parameters
as an identity matrix. We further analyze the effect of the noise layer initialization
on the overall performance. We define TDwRegu as the stacked noise model with
regularization, initialized with true injected noise distribution and RandwRegu as the
stacked noisemodelwith regularization, initialized randomly.We run all experiments
five times and report the mean accuracy.

5.2 Artificial Label Noise

To examine the robustness of NNAQC on artificially injected noise, we corrupt the
true labels according to (1) with p ∈ {0, 0.05, 0.10, 0.30, 0.50, 0.70}.
CIFAR-10: We train our CNN on CIFAR-10 dataset [6], a subset of 80 million Tiny
Image dataset [3]. It contains natural images of size 32 × 32 × 3 from 10 different
categories. It has 50K training and 10K test images. On the clean dataset, the base
model CNN achieves 20.49% classification error. We produce a noisy dataset D′
by corrupting the labels according to the noise distribution (1) for each value of p.
Table1 first row shows the comparative performance of NNAQC when the networks
are trained using 50K training samples. In all cases, NNAQC, perhaps regularized
by dropout, substantially outperforms other approaches. This includes the genie-
aided approaches, bolstering our claim that it is less important to know the noise
statistics than to learn an effective denoising operator for training. Further, NNAQC
is robust to variations in the noise level, recovering near-optimum performance when

Deep Neural Networks for Corrupted Labels 225

Table 1 NNAQCperformance for different datasets and compared to other approachesw.r.t number
of training samples

Training samples 50K

Noise % 0 5 10 30 50 70

CIFAR-10 Base model 20.49 23.00 25.30 30.49 39.47 65.60

Genie-aided 20.50 21.07 24.32 28.09 39.29 62.38

Genie-aided
(QC)

20.98 22.22 23.23 25.52 33.98 57.57

Trace 22.48 23.00 23.90 27.20 39.06 63.00

Bootstrapping 23.33 23.76 25.00 28.64 35.07 66.14

Dropout 37.29 36.90 31.30 25.40 31.28 63.04

F-correction 21.00 21.45 22.10 23.70 29.12 58.91

Ours NNAQC 21.11 21.85 22.03 24.20 28.41 56.12

Regu. NNAQC 20.96 21.40 22.05 23.10 28.06 56.09

Training samples 60K

Noise % 0 5 10 30 50 70

MNIST Base model 00.89 02.67 03.68 04.50 34.50 48.80

Genie-aided 00.89 02.67 03.68 04.50 34.50 48.80

Trace 01.29 01.40 01.46 02.12 03.80 24.20

Bootstrapping 01.29 01.30 01.41 02.00 03.60 22.20

Dropout 01.29 01.29 01.32 01.83 02.83 24.60

F-correction 01.12 01.13 01.19 01.50 02.23 21.00

Ours NNAQC 01.14 01.15 01.24 01.83 02.20 16.42
Regu. NNAQC 01.01 01.08 01.18 01.46 02.19 18.70

there is little noise. Although, we notice that NNAQC performances better than
NNAQC with dropout regularization (Regu. NNAQC) in some of the cases, but this
performance gap is negligible. However, we observe a significant performance gap
with the datasets having more than 10 classes.

To evaluate the robustness of NNAQC with respect to varying training dataset
size, in Table1, we show the performance of all the approaches as a function of
number of training samples. For every dataset, we starts with original number of
training samples and keep on decrease the samples by 20K, as shown in Table1.
For CIFAR-10 dataset, in column 1 we train all the models with all 50K training
samples. We also find that the performance of F-correction [38] is close to the
performance to the NNAQC, however, as we reduce the training dataset size NNAQC
outperforms F-correction significantly. Since [38] works by estimating the noise
transition matrix, the performance gap on smaller training set further strengthens
our claim that learning a correct noise model is neither necessary nor sufficient for
state-of-the-art performance in the presence of label noise.

We also compareNNAQC to [33], which uses a pre-trainedAlexNet to obtain high
level features for training images and fine-tunes a final softmax layer onD′. Because

226 I. Jindal et al.

they use a pre-trained network where NNAQC and other approaches train a CNN
from scratch, a direct comparison of results is impossible. However, in the presence
of 50% noise for 50K training samples, [33] reports 28% classification error rate,
compared to 28.41% for NNAQC. That is, NNAQC performs competitively with
this approach even though it is not pre-trained, which may indicate that it is a more
powerful approach overall.

MNIST: We perform similar experiments on handwritten digits dataset MNIST
[44], which contains 60K training images of the 10 digits of size 28 × 28 and 10K
test images. We produce a noisy dataset D′ as in the CIFAR-10 case. On the clean
dataset, the base model CNN achieves a classification error rate of 0.89%. In Table1
(Last row) we again see that NNAQC provides superior performance overall and is
robust to both high noise power and a smaller training set. Similar to CIFAR-10,
we compare the performance of NNAQC against the pre-trained/fine-tuned strategy
[33] on the MNIST dataset. In the presence of 50% noise NNAQC outperforms the
[33], achieving 2.2% classification error while [33] achieves at minimum 7.63%
classification error.

CIFAR-100: We next show the performance of NNAQC on a dataset with more
classes, making the problem more challenging: CIFAR-100 [6] which consists of
32 × 32 color images of 100 different categories containing 600 images each. There
are 500 images for training and 100 images for testing per class. Because of the com-
plexity of this dataset, we use a different baseCNNmodelwith two conv+ReLU+max
pool layers, two FC layers and a softmax layer. This is a low capacity CNN network

Table 2 NNAQC performance on CIFAR-100 with different CNN architectures and compared to
other approaches

Noise % 0 5 10 30 50 60

LC-CNN Base model 50.90 52.48 53.82 60.38 68.46 88.20

Trace 53.12 54.27 55.00 58.70 64.50 84.12

Bootstrapping 54.20 54.90 55.30 59.00 69.75 88.30

Dropout 65.80 63.54 62.01 57.76 63.24 84.19

F-correction 56.68 57.13 57.11 62.67 66.12 83.90

Ours NNAQC 52.31 52.40 53.10 56.68 63.00 84.00

Regu. NNAQC 52.29 52.33 53.00 56.91 62.20 83.13

Noise % 0 5 10 30 50 60

44-layer ResNet Base model 30.99 31.54 33.86 36.50 64.60 84.89

Trace 31.56 31.50 34.10 36.00 65.41 84.82

Bootstrapping 31.60 31.50 34.06 36.32 63.45 84.30

Dropout 55.20 53.04 52.13 37.68 64.11 85.00

F-correction 31.00 31.13 33.12 35.80 61.24 84.00

Ours NNAQC 31.00 31.14 34.01 35.88 61.35 85.00

Regu. NNAQC 31.12 31.13 33.16 35.71 61.20 84.03

Deep Neural Networks for Corrupted Labels 227

(LC-CNN) with a classification error rate of 50.9% on the clean dataset. In order
to verify that the robustness of NNAQC is not due to the low capacity models, we
also evaluate NNAQC on a high capacity deep residual network (ResNet) [46] with
30.99% classification error rate on clean labels. We use ResNet with depth 44 and
the same training parameters as described in [38].

We compare the NNAQC performance on CIFAR-100 in Table2. Here we train
the networks on entire training data. Similar to previous experiments we fixed the
base model CNN for all the approaches. In Table2 (First row), we show the com-
petitive performance of NNAQC over other approaches when trained on LC-CNN.
We observed that the performance of NNAQC on CIFAR-100 is consistent with
MNIST and CIFAR-10, proves the scalability of NNAQC. Here, dropout particularly
improves performance (Regu. NNAQC), likely because the larger label noise model
benefits from regularization. We also show the performance of NNAQC on ResNet
architecture in Table2 (Second row). We observe that among other approaches only
F-correction performs equally well with NNAQC at a number of occasions, however,
with the LC-CNN the scenario is different—NNAQC performs better than all the
other approaches. Comparing NNAQC performance on ResNet with LC-CNN, it is
clear that the NNAQC performance is independent of base CNN network architec-
ture. This claim is further strengthened by our experiments on Clothing 1M datasets
with different CNN architectures in the next section.

ImageNet: We further test the scalability of NNAQC to a 1000 class classification
problem.We show the performance of NNAQC on ImageNet 2012 dataset [7] which
has 1.3M image with clean labels over 1000 categories. For this experiment, we use
CNN model of Krizhevsky et al. [1] as the base model. This CNN model has five
conv+RELU+max pool layers, two FC layers and a softmax layer. As described in
[23], we generate a column stochastic noise distributionmatrix (φ) such that for a par-
ticular class, noise is randomly distributed to only 10 other randomly chosen classes.
For 50% label noise, each class has 50% correct labels and other 50% labels are
randomly distributed among 10 randomly chosen classes. Since our main intention
here is to show the scalability of NNAQC to a large number of classes and tomaintain
the simplicity, we transfer the parameters of first four convolutional blocks from a
pre-trainined AlexNet model. While training, we keep the parameters of first four
convolutional blocks (conv+ReLU+max pool) intact/frozen and only train the last
convolutional block, two FC layers, a softmax layer and the stacked NNAQC layer.
In Table3 we compare the NNAQCperformance with the base Alexnet model (i.e. no
noise model) on the validation set images, with 0, 10, and 50%, randomly-distributed
corrupted labels. We observe a slight performance gain for NNAQC over the base
modelwith “clean” labels-perhaps due to label noise inherent in the ImageNet dataset.
We observe that the 50% label noise significantly hurts the performance of the base
model whereas the NNAQC withstands and shows a superior performance (a clear
gain of∼11.0%) over the base model. Here, dropout regularization (Regu. NNAQC)
further improves the overall performance by 2.51%.

228 I. Jindal et al.

Table 3 ImageNet validation set classification error rate

Noise % Top 5 val. error

0 10 50

ImageNet Base model 19.20 31.21 53.46

Trace 19.10 29.00 46.24

Ours NNAQC 19.30 29.10 44.31

Regu. NNAQC 18.30 28.21 41.80

TREC2 Reference [47] is a question classification dataset consisting of fact based
questions divided into broad semantic categories.We use a six-class version of TREC
dataset. For this dataset, the base model network architecture consists of an input
and embedding layer + [3] one feature windows with 100 feature maps and dropout
rate 0.5 with batch size 10.

We evaluate the performance of our model on TREC dataset in Table4 in the
presence of uniform and random label noise and compare the performance with
the base model (WoNM) as our baseline. In all the regimes, the proposed approach
is significantly better than the baseline for both random and uniform label noise.
For all datasets, we observe a gain of approximately 30% w.r.t the baseline in the
presence of extreme label noise. We do observe a drop in classification accuracy as
we increase the percentage of label noise but even at the extreme label noise our
method outperformed the baseline method. Interestingly, if we assume an oracle
to determine prior knowledge of true noise distribution (TDwRegu01), it does not
necessarily improve classification performance, especially for multi-class classifica-
tion problems. In addition to this, we also observe a slight performance gain for the
proposed approach over the baseline with clean labels—perhaps due to label noise
inherent in the datasets.

5.3 Real Label Noise

Finally, we evaluate the performance of NNAQC on real world noisy label dataset
Clothing 1M [10] in terms of classification error rate. This dataset contains 1M
images with noisy labels from 14 different classes. Alongwith the incorrectly labeled
images, this dataset provides 50K clean images for training; 14k for validation; and
10k for testing. For this dataset, we use a 50-layer ResNet pre-trained on ImageNet
dataset as a base model. Similar to [38], we train the network with different weight-
decay parameter depending on the training dataset size. In Table5 we compare the
performance of NNAQC with a number of existing approaches.

At first, we see a clear performance improvement of ∼3% with ResNet in com-
parison to AlexNet (#1 vs. #3). On clean training images NNAQC (#7) performs
better than the base model (#3) as expected. On noisy images with ImageNet pre-

2http://cogcomp.cs.illinois.edu/Data/QA/QC/.

http://cogcomp.cs.illinois.edu/Data/QA/QC/

Deep Neural Networks for Corrupted Labels 229

Ta
bl
e
4

Te
st
pe
rf
or
m
an
ce

on
T
R
E
C
te
xt

cl
as
si
fic

at
io
n
da
ta
se
t

B
at
ch

si
ze

10

L
ab
el
fli
ps

U
ni
fo
rm

R
an

do
m

T
R
E
C

N
oi
se
%

C
le
an

da
ta

10
20

30
40

50
60

70
0

10
20

30
40

50
60

70

W
oN

M
(%

)
92

.8
87

.6
83

.6
75

.8
7

67
.2
7

57
.4

46
.2
7

42
.8

92
.8

85
.9
3

82
.2

74
.0

68
.4

53
.5
3

48
.2

31
.4
7

T
D
w
R
eg
u0

1(
%
)

50
.8
7

45
.3
3

45
.4

36
.3
3

25
.8
7

28
.3
3

16
.8
7

16
.8
7

50
.8
7

56
.4

36
.8

24
.0

25
.4
7

22
.6

18
.8

22
.6

N
M
W
oR

eg
u(
%
)

92
.3
3

88
.0
7

84
.6
7

76
.4

68
.4
7

58
.4

50
.0
7

41
.3
3

92
.0
7

85
.8
7

84
.2
7

72
.4
7

66
.5
3

50
.1
3

44
.6

33
.0

N
M
w
R
eg
u0

01
(%

)
92

.4
7

90
.5
3

88
.0
7

81
.6

73
.4
7

64
.0
7

55
.8
7

43
.6
7

92
.4

88
.5
3

86
.4

77
.2

67
.6
7

54
.6
7

47
.9
3

34
.8
7

N
M
w
R
eg
u0

1(
%
)

92
.7
3

90
.8

89
.5
3

88
.6
7

84
.9
3

79
.6
7

69
.6
7

52
.4

92
.7

90
.3
3

90
.6

86
.4
7

83
.0
7

70
.9
3

65
.2

33
.4

B
at
ch

si
ze

50

L
ab
el
fli
ps

U
ni
fo
rm

R
an

do
m

N
oi
se
%

C
le
an

la
be
ls

10
20

30
40

50
60

70
0

10
20

30
40

50
60

70

W
oN

M
(%

)
92

.8
87

.2
7

83
.0
7

75
.0
0

69
.1
3

61
.5
3

50
.1
3

39
.8

92
.8

86
.0
0

81
.2

76
.2

64
.0
7

52
.4

47
.4

34
.1
3

T
D
w
R
eg
u0

1(
%
)

55
.7
3

50
.4

44
.7
3

39
.6

22
.2
7

25
.6
7

14
.9
3

21
.0
0

55
.7
3

45
44

.9
3

27
.7
3

27
.8
7

22
.6

17
.8
7

22
.6

N
M
W
oR

eg
u(
%
)

92
.6

87
.7
3

83
.3
3

76
.3
3

70
.6
7

56
.8

48
.2

39
.6
7

92
.6
0

85
.2
7

83
.0
0

73
.6

65
.8

50
.4

45
.9
3

30
.7
3

N
M
w
R
eg
u0

01
(%

)
92

.5
3

90
.7
3

87
.2
0

82
.5
3

73
.9
3

65
.0
7

52
.8
7

44
.6
0

92
.5
3

88
87

.2
79

.0
7

71
.2

51
.6
7

49
.0
0

33
.4
0

N
M
w
R
eg
u0

1(
%
)

92
.5
3

91
.3
3

90
.2
7

88
.4
7

83
.8
7

77
.8
7

68
.7
3

55
.6
7

92
.5
3

90
.0
0

90
.2

85
.9
3

82
.6

71
.4

67
.3
3

37
.5
3

230 I. Jindal et al.

Table 5 NNAQC performance on Clothing 1M dataset. #10 shows the best results. #6 is reported
results from [26]

Clothing1M

Model/method Init Training Error

1 AlexNet/cross- ImageNet 50k 28.17

2 AlexNet/trace #1 1M, 50k 24.84

3 50-ResNet/cross- ImageNet 50K 25.12

4 50-ResNet/F-corr- ImageNet 1M 30.16

5 50-ResNet/cross- #4 50k 19.62

6 50-ResNet/[26] ImageNet 1M 27.77

7 50-ResNet/NNAQC ImageNet 50K 25.10

8 50-ResNet/NNAQC ImageNet 1M 27.73

9 50-ResNet/NNAQC ImageNet 1M, 50K 24.58

10 50-ResNet/cross- #8 50K 19.45

training, we gain a 3% performance improvement compared to F-correction. Also,
in comparison to a very recent work [26] (#6 vs. #8), NNAQC performance is very
competitive. Further, we observe the effect of availability of clean 50k images on the
NNAQCperformance, that is, given the clean labels, NNAQCperformance improved
by ∼3% (#8 vs. #9). In a similar vein to [38], we first train NNAQC on 1M noisy
images (#8) and fine tune the network with 50k clean images (#10), we observe that
the NNAQC outperforms all the methods in Table5 and is very competitive overall.

5.4 Effect of Batch Size

We also observe the effect of different batch sizes on performance as described in
[48]. For all datasets, we do observe small performance gains for highly non-uniform
noisy labels, for instance 70%, in Fig. 7 row 2. However, for uniform label flips, we
do not observe performance gains with increasing batch size.

Table 6 SVM classification

TRB TRPr

Data(N%) WoNM Noisy True NMwRegu01 Noisy True

SST2 (40) 70.24 70.95 79.24 82.32 73.90 83.25

AG (70) 59.70 52.44 79.18 90.33 86.27 89.4

AG (60) 83.25 68.8 88.28 90.45 87.77 90.78

TREC (40) 66.80 63.4 79.0 73.40 69.6 83.2

TREC (20) 83.6 80.0 86.0 87.40 83.6 90.0

Deep Neural Networks for Corrupted Labels 231

Fig. 7 Effect of batch size
on label noise classification
for different datasets. [Best
viewed in color]

(a) TREC Uniform

(b) TREC Random

5.5 Understanding Noise Model

In order to further understand the noise model, we first train the base model and
the proposed model on noisy labels. Afterward, we collect the last fully-connected
layer’s activations for all the training samples and treat them as the learned feature
representation of the input sentence. We get two different sets of feature representa-
tions, one corresponding to the base model (TRB), and the other corresponding to the
proposedmodel (TRPr). Given these learned feature representations—the artificially
injected noisy labels and the true labels of the training data—we learn two different
SVMs for each model, with and without noise. For the base model, for both SVMs,
we use TRB representation as inputs and train the first SVM with the true labels as
targets and the second SVM with the unreliable labels as targets. Similarly, we train
two SVMs for the proposed model. After training, we evaluate the performance of
all the learned SVMs on clean test data in Table6, where the 1st column represents
the corresponding model performance, “Noisy” and “True” column represents the
SVMperformance when trained on noisy and clean labels, respectively.We run these
experiments for different datasets with different label noise.

The SVM, trained on TRB and noisy labels, is very close to the base model
performance (6). This suggests that the base model is just fitting the noisy labels.

232 I. Jindal et al.

On the other hand, when we train an SVM on the TRPr representations with true
labels as targets, the SVMachieves the proposedmodel performance. Thismeans that
the proposed approach helps the base model to learn better feature representations
even with the noisy targets, which suggest that this noise model is learning a label
denoising operator.

We analyze the representation of training samples in feature domain by plotting
the t-SNE embeddings [49] of the TRB and TRPr. For brevity, we plot the t-SNE
visualizations for TREC dataset with 50% label noise in Fig. 8.

For each network, we show two different t-SNE plots. For example in Fig. 8a
we plot two rows of t-SNE embeddings for the proposed model. In the first row of
Fig. 8a, each training sample is represented by its corresponding true label, while
in the second row (the noisy label plot) each training sample is represented by its
corresponding noisy label. We observe that, as the learning process progresses, the
noisemodel helps the basemodel to cluster the training samples in the feature domain.
With each iteration, we can see the formation of clusters in Row 1. However, in Row

(b) Iteration 0 (c) Iteration 5 (d) Iteration 10 (e) Iteration 18

(a) Proposed model

(g) Iteration 0 (h) Iteration 5 (i) Iteration 10 (j) Iteration 18

(f) No noise model stacked

Fig. 8 t-SNE visualization of the last layer activations of a base network before softmax for
TREC Dataset with 50% corrupted labels; First row in (a) when the corresponding true labels are
superimposed on the t-SNE data points; Second row in (a) when the noisy labels are superimposed
onto the t-SNE data points. [Best viewed in color]

Deep Neural Networks for Corrupted Labels 233

2, when the noisy labels are superimposed, the clusters are not well separated. This
means that the noise model denoises the labels and presents the true labels to the
base network to learn.

In Fig. 8f, we plot two rows of t-SNE embeddings of the TRB representations. It
seems that the network directly learns the noisy labels. This provides further evidence
to support [50]’s finding that the deep network memorizes data without knowing of
true labels. In Row 2 of Fig. 8f, we can observe that the network learns noisy features
representations which can be well clustered according to given noisy labels.

6 Conclusion and Future Work

In this work we describe a scalable and effective approach towards training a deep
networks on noisy data labels. We show the performance of this approach on variety
of different datasets with different noise regimes and varying training data sizes
for different modalities. We observe that this approach is model agnostic and can be
applied to any deep architecture. We augmented a standard deep neural network with
a non-linear noise model that models the label noise. The capabilities of this noise
model are further enhanced by adding an extra unsupervised component to the final
loss function. To learn the classifier and the noise model jointly, we apply different
regularization to the weights of the final softmax layer. One way to interpret the
results of this approach is that the deep network is encouraged to learn to cluster the
data–rather than to classify it–to a greater extent than onewould expect from the noise
statistics. In other words, it is better to let deep networks cluster ambiguously-labeled
data than to risk learning noisy labels. The details of this phenomenon–including
which noise model is “ideal” for training an accurate network–is a topic for future
research. Further, we anticipate that this model can handle instance dependent label
noise as well, that is, quasi clustering step accounts for instance-dependent noise
without learning a full instance-dependent noise model. Future works shall consider
analyzing the instance dependent label noise.

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

2. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.:
Microsoft coco: common objects in context. In: European Conference on Computer Vision,
pp. 740–755. Springer (2014)

3. Torralba, A., Fergus, R., Freeman,W.T.: 80million tiny images: a large data set for nonparamet-
ric object and scene recognition. IEEE Trans. pattern Anal. Mach. Intell. 30(11), 1958–1970
(2008)

4. Johnson, J., Karpathy, A., Fei-Fei, L.: Densecap: Fully convolutional localization networks for
dense captioning. In: IEEE Conference on Proceedings of the Computer Vision and Pattern
Recognition, pp. 4565–4574 (2016)

234 I. Jindal et al.

5. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

6. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical

image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2009, pp. 248–255. IEEE (2009)

8. Frénay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans.
Neural Netw. Learn. Syst. 25(5), 845–869 (2014)

9. Zhu, X., Wu, X.: Class noise vs. attribute noise: a quantitative study. Artif. Intell. Rev. 22(3),
177–210 (2004)

10. Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for
image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2691–2699 (2015)

11. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751
(2014)

12. Zhu, X.: Semi-supervised learning literature survey (2005)
13. Aslam, J.A., Decatur, S.E.: On the sample complexity of noise-tolerant learning. Inf. Process.

Lett. 57(4), 189–195 (1996)
14. Natarajan, N., Dhillon, I.S., Ravikumar, P.K., Tewari, A.: Learning with noisy labels. In:

Advances in Neural Information Processing Systems, pp. 1196–1204 (2013)
15. Liu, T., Tao,D.: Classificationwith noisy labels by importance reweighting. IEEETrans. Pattern

Anal. Mach. Intell. 38(3), 447–461 (2016)
16. Lawrence, N.D., Schölkopf, B.: Estimating a kernel fisher discriminant in the presence of label

noise. In: ICML, vol. 1, Citeseer, pp. 306–313 (2001)
17. Rebbapragada, U., Brodley, C.E.: Class noise mitigation through instance weighting. In: Euro-

pean Conference on Machine Learning, pp. 708–715. Springer (2007)
18. Brodley, C.E., Friedl, M.A., et al.: Identifying and eliminating mislabeled training instances.

In: AAAI/IAAI, vol. 1, pp. 799–805 (1996)
19. Brodley, C.E., Friedl, M.A.: Identifying mislabeled training data. J. Artif. Intell. Res. 11, 131–

167 (1999)
20. Manwani, N., Sastry, P.: Noise tolerance under risk minimization. IEEE Trans. Cybern. 43(3),

1146–1151 (2013)
21. Ma, X., Wang, Y., Houle, M.E., Zhou, S., Erfani, S.M., Xia, S.T., Wijewickrema, S., Bailey,

J.: Dimensionality-driven learning with noisy labels (2018). arXiv:1806.02612
22. Wang, Y., Liu, W., Ma, X., Bailey, J., Zha, H., Song, L., Xia, S.T.: Iterative learning with open-

set noisy labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8688–8696 (2018)

23. Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolutional networks
with noisy labels (2014). arXiv:1406.2080

24. Jindal, I., Nokleby, M., Chen, X.: Learning deep networks from noisy labels with dropout
regularization. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp.
967–972. IEEE (2016)

25. Jindal, I., Pressel, D., Lester, B., Nokleby, M.: An effective label noise model for dnn text
classification (2019). arXiv:1903.07507

26. Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning
with noisy labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5552–5560 (2018)

27. Li, Y., Yang, J., Song, Y., Cao, L., Luo, J., Li, L.J.: Learning from noisy labels with distillation.
In: ICCV, pp. 1928–1936 (2017)

28. Malach, E., Shalev-Shwartz, S.: Decoupling “when to update” from “how to update”. In:
Advances in Neural Information Processing Systems, pp. 961–971 (2017)

29. Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy
large-scale datasets with minimal supervision. In: The Conference on Computer Vision and
Pattern Recognition (2017)

http://arxiv.org/abs/1806.02612
http://arxiv.org/abs/1406.2080
http://arxiv.org/abs/1903.07507

Deep Neural Networks for Corrupted Labels 235

30. Vahdat, A.: Toward robustness against label noise in training deep discriminative neural net-
works. In: Advances in Neural Information Processing Systems, pp. 5596–5605 (2017)

31. Yao, J., Wang, J., Tsang, I.W., Zhang, Y., Sun, J., Zhang, C., Zhang, R.: Deep learning from
noisy image labels with quality embedding. IEEE Trans. Image Process. (2018)

32. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural
networks on noisy labels with bootstrapping (2014). arXiv:1412.6596

33. Azadi, S., Feng, J., Jegelka, S., Darrell, T.: Auxiliary image regularization for deep cnns with
noisy labels (2015). arXiv:1511.07069

34. Joulin, A., van der Maaten, L., Jabri, A., Vasilache, N.: Learning visual features from large
weakly supervised data. In: European Conference on Computer Vision, pp. 67–84. Springer
(2016)

35. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: Regularizing very deep neural
networks on corrupted labels (2017). arXiv:1712.05055

36. Ghosh, A., Kumar, H., Sastry, P.: Robust loss functions under label noise for deep neural
networks. In: AAAI, pp. 1919–1925 (2017)

37. Mnih, V., Hinton, G.E.: Learning to label aerial images from noisy data. In: Proceedings of the
29th International conference on machine learning (ICML-12), pp. 567–574 (2012)

38. Patrini, G., Rozza, A., Menon, A.K., Nock, R., Qu, L.: Making deep neural networks robust to
label noise: a loss correction approach. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition(CVPR), pp. 2233–2241 (2017)

39. Han, B., Yao, J., Niu, G., Zhou, M., Tsang, I., Zhang, Y., Sugiyama, M.: Masking: A new
perspective of noisy supervision (2018). arXiv:1805.08193

40. Misra, I., Lawrence Zitnick, C.,Mitchell, M., Girshick, R.: Seeing through the human reporting
bias: visual classifiers fromnoisy human-centric labels. In: Proceedings of the IEEEConference
on Computer Vision and Pattern Recognition, pp. 2930–2939 (2016)

41. Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adaptation layer
(2017)

42. Audhkhasi, K., Osoba, O., Kosko, B.: Noise-enhanced convolutional neural networks. Neural
Netw. 78, 15–23 (2016)

43. Vedaldi, A., Lenc, K.: Matconvnet: convolutional neural networks for matlab. In: Proceedings
of the 23rd ACM international conference on Multimedia, pp. 689–692. ACM (2015)

44. LeCun, Y., Cortes, C., Burges, C.J.: The MNIST database of handwritten digits (1998)
45. Pressel, D., Ray Choudhury, S., Lester, B., Zhao, Y., Barta, M.: Baseline: a library for rapid

modeling, experimentation and development of deep learning algorithms targeting nlp. In:
Proceedings of Workshop for NLP Open Source Software (NLP-OSS), Association for Com-
putational Linguistics, pp. 34–40 (2018)

46. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778
(2016)

47. Voorhees, E.M., Tice, D.M.: The TREC-8 question answering track evaluation. In: TREC,
vol. 82, (1999)

48. Rolnick, D., Veit, A., Belongie, S., Shavit, N.: Deep learning is robust to massive label noise
(2017). arXiv:1705.10694

49. VanDerMaaten, L.: Accelerating t-sne using tree-based algorithms. J.Mach. Learn. Res. 15(1),
3221–3245 (2014)

50. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires
rethinking generalization (2016). arXiv:1611.03530

http://arxiv.org/abs/1412.6596
http://arxiv.org/abs/1511.07069
http://arxiv.org/abs/1712.05055
http://arxiv.org/abs/1805.08193
http://arxiv.org/abs/1705.10694
http://arxiv.org/abs/1611.03530

Constructing a Convolutional Neural
Network with a Suitable Capacity
for a Semantic Segmentation Task

Yalong Jiang and Zheru Chi

Abstract Although the state-of-the-art performance has been achieved in many
computer vision tasks such as image classification, object detection, saliency pre-
diction and depth estimation, Convolutional Neural Networks (CNNs) still perform
unsatisfactorily in some difficult tasks such as human parsing which is the focus of
our research. The inappropriate capacity of a CNN model and insufficient training
data both contribute to the failure in perceiving the semantic information of detailed
regions. The feature representations learned by a high-capacity model cannot gen-
eralize to the variations in viewpoints, human poses and occlusions in real-world
scenarios due to overfitting. On the other hand, the under-fitting problem prevents
a low-capacity model from developing the representations which are sufficiently
expressive. In this chapter, we propose an approach to estimate the complexity of a
task and match the capacity of a CNNmodel to the complexity of a task while avoid-
ing under-fitting and overfitting. Firstly, a novel training scheme is proposed to fully
explore the potential of low-capacity CNNmodels. The scheme outperforms existing
end-to-end training schemes and enables low-capacity models to outperformmodels
with higher capacity. Secondly, three methods are proposed to optimize the capacity
of a CNN model on a task. The first method is based on improving the orthogonal-
ity among kernels which contributes to higher computational efficiency and better
performance. In the second method, the convolutional kernels within each layer are
evaluated according to their semantic functions and contributions to the training and
test accuracy. The kernels which only contribute to the training accuracy but has no
effect on the testing accuracy are removed to avoid overfitting. In the third method,
the capacity of a CNN model is optimized by adjusting the dependency among con-
volutional kernels. A novel structure of convolutional layers is proposed to reduce the

Y. Jiang (B) · Z. Chi
Department of Electronic and Information Engineering, The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
e-mail: AllenYLJiang@outlook.com; yalong.jiang@connect.polyu.hk

Z. Chi
e-mail: enzheru@polyu.edu.hk

Z. Chi
Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_8

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_8&domain=pdf
mailto:AllenYLJiang@outlook.com
mailto:yalong.jiang@connect.polyu.hk
mailto:enzheru@polyu.edu.hk
https://doi.org/10.1007/978-3-030-31756-0_8

238 Y. Jiang and Z. Chi

number of parameters while maintaining the similar performance. Besides capacity
optimization, we further propose a method to evaluate the complexity of a human
parsing task. An independent CNNmodel is trained for this purpose using the labels
for pose estimation. The evaluation on complexity is achieved based on estimated
pose information in images. The proposed scheme for complexity evaluation was
conducted on the Pascal Person Part dataset and the Look into Person dataset which
are for human parsing. The schemes for capacity optimization were conducted on
our models for human parsing which were trained on the two data sets. Both quan-
titative and qualitative results demonstrate that our proposed algorithms can match
the capacity of a CNN model well to the complexity of a task.

Keywords Convolutional neural networks (CNNs) · Under-fitting · Over-fitting ·
Capacity optimization · Complexity evaluation

1 Introduction

The research works in deep learning have mostly focused on building models with
wider [1] or deeper [2, 3] architectures to achieve better performance in applications.
Only a few papers have paid attention to the necessary capacity required for a CNN
to be competent for a task. For instance, it is addressed in [4] that the capacity
of a machine learning model measures how complex a function it can model. A
model with a higher capacity can represent more complex relationships between
variables. Moreover, [5] defined the capacity of a model as the logarithm of the
number of functions it can implement. To evaluate whether a ReLU-based neural
network is competent for a task, firstly the process of inference should be equalized
to parametrically mapping the high-dimensional distributions in datasets to a latent
space. The distributions of images are represented by a polyhedral manifold which
is partitioned into pieces (cells) and different pieces are mapped into the latent space
independently. The rectified linear complexity of the manifold of images and that
of a neural network are compared to decide whether a CNN model can encode the
data [5]. The former is evaluated by the minimal number of pieces required to piece-
wisely map images to latent spaces and is determined by the distribution of images.
The latter is determined by the upper bound of the number of piecewise functions that
can be implemented by a CNN. ACNN is competent for a task only when its rectified
linear complexity surpasses the complexity of the distribution of images. Similarly,
VC dimension, the growth function, the Rademacher and Gaussian complexity, the
metric entropy, and the minimum description length (MDL) have been proposed to
evaluate the complexity of a task and the capacity of a model.

Although the above-mentioned papers have conducted analysis on CNNs’ capac-
ity, their conclusions can only be applied to preliminary tasks such as CIFAR-10 [6].
Different from the works mentioned above, we have tried to match the capacity of
models to that of high-level vision tasks such as image segmentation. Our chapter is

Constructing a Convolutional Neural Network with a Suitable … 239

divided into four parts. Firstly, the performance comparison on some general mod-
els are given in Introduction to show the advantage of capacity optimization. The
comparison demonstrates the possibility of simplifying CNNs while maintaining
performance. Secondly, we propose the method to better explore the potential of
CNNs to improve performance without increasing complexity. Thirdly, our work on
estimating the complexity of a segmentation task is introduced. Finally, methods of
matching the capacity of a CNN model to the complexity of a tasks are proposed.
Novel training strategies, schemes for data augmentation, improved architectures of
deep learning models and analysis on datasets are all included in the chapter. As
a result, this chapter is closely related to the architectural design of deep learning
models, one of the major focuses of this volume.

Performance achieved by high-capacitymodels and low-capacitymodels. For
a CNN, the number of piecewise mapping functions can be measured by the number
of independent convolutional kernels that can transform the inputs in different ways.
Different kernelswithin the same layer extract complementary cues.Kernels in higher
layers allow for different compositions of the outputs from lower layers.

The architectures of CNNs have evolved for years with performance and capacity
increased significantly. For instance, the accuracy on the ImageNet dataset [7] has
been significantly improved by structures such as AlexNet [8], VGG [9], GoogLeNet
[10], ResNet [11], DenseNet [12], ResNeXt [13], SE-Net [14] and the automatically
designed architectures such as those reported in [15–17]. Moreover, the residual con-
nections [11] and batch normalization [18] have made it possible to build extremely
deep CNNs with more than 1000 layers [19]. It is shown in [5] that deeper CNNs
have higher capacity. Figure 1 shows the relation between the accuracy on the Ima-
geNet challenge [7] and the capacity of a CNN. The CNNs in Fig. 1 are with the
same architecture but differ in capacity and depth.

Fig. 1 The classification accuracy of CNNs with different capacity. The CNNs are with the same
architecture but differ in depth. The accuracy was reported in [20–23]. The training and test images
are firstly resized to 256 × N (N × 256) with the shortest edge equal to 256 and then cropped to
224 × 224. ResNet-i denotes a residual network with i layers

240 Y. Jiang and Z. Chi

Figure 1 shows that the increase in capacity contributes to the improvements in
accuracy on the ImageNet Dataset which is extremely large. However, the number
of parameters grows exponentially as capacity and depth increase. As a result, the
process of training is confronted with several prominent challenges [24]. Typical
problems occur when solving the high-dimensional non-convex optimization prob-
lem are shown below:

(1) Hessian matrices suffer from ill conditions in which gradients get stuck and
training slows down even in the presence of a strong gradient.

(2) There exists a large amount of local minima.
(3) The landscapes of loss functions have many high-cost saddle points which may

slow down convergence.
(4) The cliffs in loss landscapes lead to exploding gradients.
(5) The improvement in accuracy often comes at the cost of computational

resources.

Moreover, deep models are vulnerable to adversarial examples which are the
slightly modified versions of training data [25]. As a result, it is better to apply
simpler models to avoid the above-mentioned problems, especially on tasks which
are not as complex as ImageNet challenge. Figure 2 shows an example. In this case, a
smaller model whose potential is fully explored can perform as well as or even better
than larger models on the segmentation task. The metric for evaluation is mIOU (%)
[26] which divides the number of true positive pixels by the sum of numbers of true
positive ones, false positive ones and false negative ones:

Fig. 2 mIOU (%) of segmentation models with different backbones on the Pascal VOC 2012
validation dataset for segmentation. The task-specific layers are the same for the three models. The
performance was evaluated on the validation set. The metric was obtained using the development
kit provided by [26]. ResNet-i denotes a residual backbone with i layers

Constructing a Convolutional Neural Network with a Suitable … 241

mI OU = 1

N

N∑

i=1

nii
ti + ∑

j �=i n ji
(1)

where n ji is the number of pixels of class j which are predicted to class i , and
t j = ∑

i n ji (ti = ∑
j ni j) is the total number of pixels belonging to class j(i).

The Pascal VOC 2012 Dataset for segmentation contains 1,464 training images
with 3,507 objects and 1,449 images with 3,422 objects for validation. The number
of classes is 21. The number of images and classes are far less than those in the
ImageNet classification task which has over 1,000,000 images and 1,000 classes. As
can be seen from Fig. 2, ResNet-34 with 34 layers outperforms ResNet-50 with 50
layers in this simpler task. In our work, methods will be proposed to make simple
networks perform as well as complex ones.

Techniques to better explore the potential of CNNs. Existing work on improv-
ing the performance of deep learning models while maintaining computational com-
plexity can be divided into two categories. The first type focus on improving the
strategies of training. Typical work of this type involves [27, 28], the former explores
proper values of gradients to help convergence while the latter proposed to train
CNNs layer-by-layer. In our work a 2-step scheme for optimization is proposed to
train CNNs in a layer-by-layer fashion. It will be shown in Sect. 2 that the scheme
outperforms the scheme proposed by [28] in the task of segmentation. The second
type of work involves all types of data augmentation. In our work the gap between
training data and test data in the task of segmentation is studied and the methods
based on transductive learning [29] are proposed in Sect. 2.1.2 to bridge the gap
between training data and test data.

Estimation of task complexity. The task of semantic image segmentation is stud-
ied in our work, it has long been a challenging computer vision task due to a lack of
ground-truth and the existence of multiple types of variances or interferences. Avail-
able datasets include Look into Person [30], Multi-human Parsing [31], Microsoft
COCO [32], Vistas [33], ADE20 k [34], and Cityscapes [35]. Existing research
works on segmentation have evolved from R-CNN [36] and selective search [37]
which conducted segmentation based on detection. A typical two-stage framework
for human parsing is discussed in [38]. The two-stage methods suffer from a disad-
vantage that segmentation is sure to fail if the first stage provides wrong bounding
boxes or saliency masks. Later work such as FCN [39] provided end-to-end schemes
in which localization and pixel-level refinement can be conducted together. FCN
was trained end-to-end and performed well on PASCAL VOC 2011 [40]. Another
typical end-to-end architecture is the encoder-decoder structure [41]. Existing end-
to-end frameworks for panoptic segmentation include [42, 43] which are also typical
examples of multi-task learning.

However, nearly all of the above-mentioned models are limited in application
because they are too complex to be matched to simple tasks. For instance, FCNs
improve on the original version through introducing a Recurrent Neural Network
(RNN) [44] but at the cost of efficiency. U-Net [41] is over-fitted to the medical
image segmentation task and cannot perform as well as other models in human

242 Y. Jiang and Z. Chi

parsing. The structure of the decoder in DeepSaliency [45] can only be applied to
a limited number of tasks. The models for semantic part segmentation [46, 47] also
suffered from the lack in training data. The algorithm proposed in [46] can only
be applied to the PASCAL Person Part dataset [48] and EdgeNet [49] requires the
training data to have both part segment labels and boundary annotations. Moreover,
Deeplab-V2 proposed in [50] and Deeplab-V3 proposed in [51] suffer from a lack of
sufficient training data. The methods in [42, 43] suffer from a lack of sufficient data
for panoptic segmentation. Reference [52] proposed to train only on the regions with
reliable labels provided by weak supervision and image priors. The reason behind
over-fitting and under-fitting in the above-mentioned tasks is the lack of analyses on
task complexity and CNNs’ capacity. None of the above-mentioned methods have
ever considered matching the complexity of a model to that of a task.

Existing approaches to tackle over-fitting includes data augmentation and weakly
supervised methods, such as BoxSup [53] and Segmenting Weakly Supervised
Images [54]. Three types of weak supervision have been proposed in [29]. Incom-
plete supervision refers to the case where labeled data only occupies a small propor-
tion of training data. Semi-supervised methods based on incomplete supervision are
applied to exploit unlabeled data and can improve performance without human inter-
vention. Inexact supervision refers to the cases where some supervision information
is provided, but not as exact as desired. The third type of supervision is inaccurate
supervision which concerns the situation where supervision is not always correct or
is influenced by noises. The above-mentioned techniques have only been applied to
subjectively enrich training data. The strategies favor largermodels instead of smaller
ones which might suffer from under-fitting. Moreover, it has not yet been evaluated
whether the added data can really provide useful information which helps the model
to develop more generalizable feature representations. The problems indicate the
necessity of evaluating the complexity of training data to quantitatively show how
complex a dataset is and how complex a model is required to be competent for the
dataset (task).

Anotherwork that have indirectly addressed the complexity of tasks is Taskonomy
[55]. It has explored the relationships among visual tasks and has built a structure
amongmultiple tasks. The redundancy across tasks was also discussed. A conclusion
is drawn that through re-using the supervision from related tasks, the total number
of labeled instances required for solving tasks can be reduced by 67% (compared to
training onemodel on each task independently) with performance almost unchanged.
The major objective of Taskonomy is to find the tightest set of data that is necessary
for a task and remove the 67% redundancy in data. Similarly, unsupervised learning
is concerned with the redundancies in the input domain and leverages the analysis
to form compact representations [56]. The major contribution of Taskonomy and
unsupervised learning can be concluded in two aspects. Firstly, for a dataset with
a fixed size, it complexity grows when its instances are less similar to each other.
Our work will also address this issue by using the number of variances to measure
how complex a dataset is. The complexity evaluates how distinguished instances are.
Secondly, if there exists huge redundancy in a dataset, training data can be reduced
without influencing the dataset’s complexity as well the performance of models

Constructing a Convolutional Neural Network with a Suitable … 243

trained on it. In our work, this type of dataset has a low complexity and a simpler
model can perform well on it.

Three methods are proposed in Sect. 3 to evaluate the complexity of a dataset
which reflects the lowest capacity required for a model to perform well on a dataset.
The methods are based on the number of variances in scales, locations and the
consistency between predictions from different models.

Optimization of model capacity. The definition of optimal capacity was given in
[57]. The optimal capacity corresponds to the boundary between under-fitting regime
and over-fitting regime. Existing research on capacity adjustment can be divided
into three categories. The first category focuses on evaluating the contributions from
height, width and the order of computations in a CNN to expressive power [58, 59].
Developmental learning [60] tried to enable a dataset to be enlarged continuously
until the capacity of a CNN is not expressive enough. The second category of work
tried to compute the information-theoretic quantities inside a CNN [61, 62]. The third
type of methods focus on evaluating the model capacity with mathematical methods.
Typical works are Algebraic Topology [63] and linear threshold functions [4].

The implementation of methods in the first category includes increasing either
the width or height of a CNN and fine-tuning the entire network. It is well-known
that deeper neurons allow for new compositions of existing neurons while wider
neurons allow for the discovery of additional task-specific clues [58]. However, the
increase in capacity is at the cost of efficiency. Reference [59] proposed to introduce
computations of higher orders to better utilize existing features without introducing
extra parameters. High-order functions enrich the hypothesis space and improve the
performance of existing network models such as ResNet [11] and WRN [64] on
CIFAR10 and CIFAR100 [65]. However, over-fitting is easier to occur. The second
category of work aims at describing the learning of a CNN with the Information
Bottleneck Principle. The entropies and mutual information within convolutional
layers are computed using heuristic statistical physics methods under the assump-
tion that weight matrices are independent. The behaviors of entropies and mutual
information throughout the process of learning are studied in [61] and a conclusion
is drawn that the relationship between compression and generalization are elusive.
The third type of work addressed the issue of designing the architecture of a CNN
by explaining how the architecture is determined by the topological complexity of
a dataset. Empirical characterization of the topological capacity of a neural network
model was provided in [63]. The topological phase transitions in neural networks
upon the increase in datasets’ complexity were introduced. Moreover, [4] provided
ways of estimating the capacity of typical neuronal models, including linear and
polynomial threshold gates, linear and polynomial threshold gates with constrained
weights and ReLU neurons. However, only fully-connected neural networks were
discussed in [4, 63]. Additionally, only very simple networks have been studied and
none of the three categories of work has focused on matching the capacity of a CNN
to the complexity of a high-level vision task such as segmentation. In our work, the
analysis of capacity on complex models and high-level vision tasks is included. The
details are given in Sect. 4.

244 Y. Jiang and Z. Chi

2 Techniques to Fully Explore the Potential
of Low-Capacity Networks

2.1 Methodology

2.1.1 Training Strategies

1. Layer-wise re-training

In this part, we propose a layer-wise training scheme which outperforms existing
end-to-end training schemes as well as existing layer-wise training schemes which
are proposed in [28].

It is common practice to train a neural network in an end-to-end fashion on the
ImageNet dataset and then fine-tune on segmentation tasks. However, training stage-
by-stage can boost the performance of a CNNmodel. Suppose a CNN is divided into
two parts: a feature extractor and task-specific layers. We propose to train the feature
extractor layer-by-layer (Fig. 3).

Denote xK as the output of the feature extractor and zK the prediction from task-
specific layers. K is the number of layers in the feature extractor. In Training Step
1, the original feature extractor and the task-specific layers are trained together. In
each step that follows, an additional layer is added to the feature extractor and the
task-specific layers which have a fixed structure are re-built on top of the newly
added layers. H layers are added one-by-one. The outputs of the feature extractor
and those of task-specific layers are denoted as xK+h and zK+h, h = 1, . . . , H .

Denote the dataset for training as
{
xn0, y

n
}
, n = 1, . . . , N where N is the number

of training samples. θh, h = 0, . . . , H denotes the parameters of the feature extractor
after the h-th layer is added, γh, h = 0, . . . , H denotes the parameters of the task-
specific layers upon adding the h-th layer and fine-tuning the overall network. θ0 and
γ0 correspond to the original network. The training process in the h-th step (h ≥ 1)
can be formalized as the minimization of the soft-max loss:

(
θ∗
h , γ ∗

h

) = argminθh ,γh

1

N

∑

n

Lsof tmax
(
zK+h

(
xn0; θh, γh

)
, yn

)
(2)

Feature Extractor (K layers)

Task-specific Layers

Kx

Kz

Input image

Training Step 1

Added Layer 1

Task-specific Layers

Training Step 2

1Kx

1K +

+ +

+z

Added Layer H

Task-specific Layers

Training Step H+1

K Hx

K Hz

. . .

Fig. 3 The proposed scheme for adding layers to a CNN and re-training

Constructing a Convolutional Neural Network with a Suitable … 245

The process of training is shown in Algorithm 1.

As is shown in Algorithm 1, the network is re-trained for two times upon the
addition of each convolutional layer (Step 3 andStep 4). In Step 3, only the parameters
in the newly added layer are optimized while in Step 4, the overall network is re-
trained, θh − θh ∩ θh−1 denotes the parameters in Layer h. It is addressed in [28]
that re-training upon the addition of each layer contributes to the improvements in
accuracy and out-performs end-to-end training:

R̂
(
zK+h;

(
θ∗
h−1, (θh − θh ∩ θh−1)

∗), γ ∗
h−1

) ≤ R̂
(
zK+h−1; θ∗

h−1, γ
∗
h−1

)
(3)

where R̂
(
zK+h; θ∗

h , γ ∗
h

) = 1
N

∑
n
Lsof tmax

(
zK+h

(
xn0; θ∗

h , γ ∗
h

)
, yn

)
and h ≥ 1. Differ-

ent from [28] where only Step 3 is conducted for each added layer, all the layers in
the CNN are optimized again after optimizing the single added layer:

R̂
(
zK+h; θ∗

h , γ ∗
h

) ≤ R̂
(
zK+h;

(
θ∗
h−1, (θh − θh ∩ θh−1)

∗), γ ∗
h−1

)
(4)

R̂
(
zK+h; θ∗

h , γ ∗
h

) ≤ R̂
(
zK+h−1; θ∗

h−1, γ
∗
h−1

)
(5)

It is obvious that StochasticGradientDescent (SGD) can at least keep the loss from
increasing (4). From (4) and (5) it can be inferred that by optimizing the complete
CNN after the optimization of the added layer in each step, the loss can be lower
than only optimizing the added layer.

It is already shown in [28] that by adding one layer and train the added layer
in each step, a network with 11 convolutional layers performs as well as VGG-13

246 Y. Jiang and Z. Chi

[9] with 13 layers and the same width but trained end-to-end. Moreover, the layer-
wise trained network outperforms VGG-11 [9] with 11 layers and the same width
but trained end-to-end. As a result, the two-step optimization scheme proposed in
Algorithm 1 contributes to larger improvements over end-to-end training schemes
than the one-step scheme proposed in [28]. A comparison was made on the Look
into Person Dataset [66]. There are 30,462 images for training, 10,000 images for
validation and 10,000 images for testing. Layers are added to the pre-trained baseline
modelwith 25 layers [67].Upon the addition of each layer, trainingwas conducted for
40,000 iterations and batch size was set to 10. The end-to-end trained network with
the same structure was trained for 40, 000× Number of layers added × 2 times.
For instance, if two layers are added to the baseline model, the network constructed
with Algorithm 1 is trained for 40,000 iterations for optimizing Layer 1 only, 40,000
iterations for optimizing the overall network, 40,000 iterations for optimizing Layer
2 only and 40,000 iterations for optimizing the overall network. The end-to-end
counterpart is trained at once for 160,000 iterations. The initial learning rate is 2e–4
and polynomial learning policy is adoptedwith its power set to 0.9. The preprocessing
techniques proposed in [68] is applied for both networks. Comparisons are shown in
Table 1.

From Table 1, it can be inferred that the network trained with Algorithm 1 out-
performs the network with the same capacity but trained end-to-end. Moreover, the
networks trained with Algorithm 1 (2-step optimization) outperforms those trained
using the scheme proposed in [28] (1-step optimization for each layer). As a result,
Algorithm 1 can better explore the potential of a CNNwithout increasing the number
of parameters.

2. Teacher-student method

In vision tasks, it is addressed in [69] that a larger model is better at extracting the
structures from huge datasets than smallermodels. However, the knowledge acquired
by a largemodel can be transferred to a small model, the smaller model trained in this
way outperforms the same network which is trained directly on the hard ground truth
labels. Reference [69] proposed the way of transferring the generalization capability

Table 1 mIOU (%) of CNNs on the look into person dataset [66]

Layer-wise trained (2-step optimization proposed in Algorithm 1) mIOU (%)

H = 0 45.27

H = 1 46.61

H = 2 47.53

H = 3 47.93

Layer-wise trained (1-step optimization proposed in [28])

H = 3 47.26

End-to-end trained

H = 3 47.12

H = 4 47.15

Constructing a Convolutional Neural Network with a Suitable … 247

of a larger model to a smaller model, the method takes the activations from a large
model, i.e. the soft-max activations, as soft targets for training a smaller model. The
soft targets contain the similarity structures over training examples. For instance, a
dog is more similar to a cat than a flower, the similarities are not provided by hard
labels. The advantage of soft targets comes from the additional information which
isn’t included in hard targets.

To solve the problem that the probabilities of some classes are too small to influ-
ence the cross-entropy cost functions of smaller networks, distillation processing is
proposed by [69]. The temperature T of the final soft-max functions can be raised
until the values are suitable to train smaller networks:

qi = exp
(
zi

/
T

)
∑
j
exp

(
z j

/
T

) (6)

qi denotes the probability of an input image or a pixel to belong to class i while zi
denotes the corresponding activation. The higher the temperature T is, the softer the
distribution over classes becomes.

The training data for distilling knowledge into a smallmodel includes both original
training images and unlabeled images. On the training set, the target activation is a
weighted sum of the soft target produced by the large model and the hard target
produced by the ground truth labels with temperature equal to 1. The soft target has a
high temperature in the soft-max function. The weight of the former should be larger
than that of the latter and the magnitude of the first term should be multiplied by T 2

to cancel the influence brought by the changes in temperature.
The teacher-student method is applied in our work, as will be addressed in Sect. 3.

2.1.2 Strategies of Data Augmentation

Unlike the scenarios in a classification task where the gap between training accuracy
and test accuracy is lower than 3% as long as the training set and the test set have
similar distributions, the gap in a segmentation task is always larger than 10%. This
indicates a pixel-specific task ismore sensitive to the (small) variations than an image-
specific task. The variations in the image segmentation task include the changes in
poses, color, illumination and so forth. In our work, two methods are proposed to
bridge the gap between the training data and test data. The variances in the test
data are studied to enrich the training data. With the variances of the training data
being more comprehensive, the potential of a model can be better explored. As was
introduced in [29], incomplete supervision concerns the situation in which a small
amount of labeled data and abundant unlabeled data are available. In that case, the
labeled data is insufficient to train a good learner. The unlabeled data are exploited by
semi-supervised learning in addition to labeled data to improve learning performance.

248 Y. Jiang and Z. Chi

Transductive learning proposed by [29] is a special type of semi-supervised learning
and assumes that the available unlabeled data is exactly the test data. The twomethods
of data augmentation proposed in our work are similar to transductive learning by
exploiting unlabeled test data to improve performance.

1. Bridge the gap between poses

The first method for data augmentation is through generating training images which
have similar poses to those from the test set. Besides a CNN model for segmenta-
tion, a model for human pose analysis was trained, as is introduced in our previous
work [68]. Skeleton detection is a simpler task than person part segmentation and
there are more training data samples available. As a result, the predictions from the
model for pose analysis tend to be more generalizable. In the proposed method, each
image is firstly divided into regions each of which contains one person. For each
region, a vector describing poses is predicted. An algorithm is developed to find the
person from training data with the most similar gesture to each person in test data.
Upon matching each pair of people, homography transformation is conducted on
the people from training images to make them more similar to those in test images.
The ground truth masks for training images are transformed in the same way. The
transformations produce mocked test images which are similar to test images but
with labels. Some examples are shown in Fig. 4. People have been segmented out
for clear demonstration.

As can be seen from Fig. 4, a mocked test set with labels is generated based on
training data. The transformations are based on the coordinates of predicted joints.

Pair 1 Pair 2 Pair 3 Pair 4

Pair 5 Pair 6

Fig. 4 Examples showing six pairs of images containing people with similar poses. Within each
pair, the left image is from the test set and the right one is from the training set. We have searched
the training set to find the person with the most similar pose to each person in each test image.
Homography transformations is conducted on the foreground regions from training images

Constructing a Convolutional Neural Network with a Suitable … 249

0

12

3

4

5

6

7
8

9

10

11

12

13

Center

(a) (b)

Fig. 5 The proposed descriptor for describing poses. a The indices of joints. b The offsets of
different joints from the center. The offsets are normalized with respect to the maximal distance
between different pairs of joints. The top histogram describes the normalized offsets in the vertical
direction while the bottom one describes those in the horizontal direction

The mocked test set can enrich the training set and bridge the gap between training
data and test data. Experiments will show that the involvement of the mocked test
set during training improves the performance of segmentation.

To evaluate the similarity in poses, a feature descriptor is developed in our work.
Firstly the definition of 14 joints is based on the discussion in [70]. The 14 joints are
nose, neck, left shoulder, left elbow, left wrist, right shoulder, right elbow, right wrist,
left hip, left knee, left ankle, right hip, right knee and right ankle. A center point can
be computed by averaging the coordinates of the predicted joints, it is shown by the
red dot in Fig. 5a.

Figure 5 describes the proposed descriptor, two histograms are computed to
describe the pose of each person in the form of horizontal and vertical translations.
The similarity in pose is evaluated by the sum of Euclidean distances between the
two pairs of histogram vectors. For a test image with multiple people, its mocked
counterpart is composed of foreground regions from different training images, an
example is shown in Pair 6 in Fig. 4. The existence of other types of variances,
such as rotations, scaling or changes in illumination may still cause the gap between
training data and test data. As a result, the data augmentation in color variances is
still required.

2. Bridge the gap in color

Besides the variances in pose, the differences in color also contribute to the gap
between training set and test set. In our work, a self-supervised CNN for colorization

250 Y. Jiang and Z. Chi

is adopted to learn on the test set, the model is used to colorize the grayscale versions
of training images based on the distributions of colors which are learned from the
test set. It is already shown in Fig. 4 that the training images can be used to generate
mocked test images. Similarly, with the joint usage of the colorization model, the
mocked test images can show more similarity in color to real test images.

Similar to human parsing, colorization is also a pixel-specific task. As a result, our
model for segmentation can be used to conduct colorization by making changes to
the loss function. According to the method proposed in [71], an RGB image is firstly
converted to Lab format. The L-channel corresponds to light while a-channel and
b-channel correspond to colors. As a result, L-channel can be treated as inputs and
the remaining two channels as ground truth outputs. Suppose the height and width
of an input image are H and W , respectively. Denote XH×W×1 as an input image
and YH×W×2 the ground truth. As is addressed in [71], colorization can be divided
into two steps. In the first step, a distribution over ab-values Ẑ ∈ [0, 1]H×W×Q is
predicted for each pixel where Q is the number of possible ab pairs, the distributions
are converted to color labels in the second step:

L
(
Ẑ,Z

)
= −

∑

h,w

weight(h,w)
∑

q

Zh,w,q log
(
Ẑh,w,q

)
(7)

where weight(h,w) denotes the weights on pixels, the most frequently appeared
pixels are assigned lowerweights. All pixels are assumed to subject to an independent
and identical distribution which is the sum of the color distribution from ImageNet
training set p and a uniform distribution 1

Q :

weight(h,w) ∝
(
0.5p+0.5

Q

)−1

(8)

In the second step, the predicted distribution mask Ẑ ∈ [0, 1]H×W×Q is converted
to color values using a soft-max function with temperature equal to 0.38 for each
pixel.

The two parts mentioned above can producemocked test images which are similar
both in colors and poses to real test images. The involvement of the generated images
during training can improve the performance of humanparsing, as is shown inTable 2.

Table 2 Improvements on mIOU (%) brought by data augmentation on poses and colors

Method mIOU (%)

Original Deep Lab-V2 [50] 64.94

Deep Lab-V2 [50] with data augmentation applied 65.41

Original segmentation module proposed in [68] 67.43

Segmentation module proposed in [68] with data augmentation applied 67.94

Constructing a Convolutional Neural Network with a Suitable … 251

From Table 2 it can be inferred that the proposed two ways of bridging the gap
between training data and test data can improve the performance of different models
without increasing computational complexity. In other words, the potential of CNNs
are better explored.

3 Estimation of Task Complexity

3.1 Methodology

3.1.1 Methods Based on the Variances in Scales

Similar to detection tasks, the performance of segmentation is influenced by the
variances in spatial dimensions and translations. For instance, it is shown in [72]
that prior information about the spatial dimensions of anchor boxes is important in
improving average IOU. Spatial dimensions include scales and aspect ratios. Refer-
ence [72] showed that by selecting appropriate prior anchors that fit well to the sizes
of objects in the interested dataset, the average IOU could be improved by 2.3% than
applying the same model without prior information. Moreover, [72] showed that the
more priors there are and the more accurate the priors are, the higher performance
becomes. That is to say, even if the spatial dimensions of objects can be predicted by
a detection model such as [72], accurate prior is also necessary because the perfor-
mance is limited by the model’s capacity or expressive power. The more variances
in spatial dimensions there are, the harder a task becomes.

In our work, a method is proposed to evaluate the scale variances in the task of
human parsing.We use the model for pose estimation to evaluate the scales of human
objects in human parsing datasets. It is well known [46] that pose estimation and
human parsing are complementary. A model for pose estimation easily suffers from
occlusions which can be fixed by amodel for human parsing. In another way, amodel
for pose estimation can provide object-level feature representations and regularity to
help a human parsing model in aligning with instances, especially in the case where
some human parts share the same color with the background. More importantly,
models for pose estimation are better at detecting objects in small scales than human
parsing models.

Figure 6 shows the predictions from the model for pose estimation. The people
in the three examples cannot be detected by human parsing models because of small
scales. The existing state-of-the-art CNNmodels for human parsing, such as PSPNet
[73], fails in segmenting out people from the third row in Fig. 6. However, the model

252 Y. Jiang and Z. Chi

Fig. 6 Images with small targets. The first and second rows: the input images. The third and fourth
rows: the results of pose estimation. The second and fourth rows are cropped from the first and
third rows for clear demonstration. The images come from the Pascal VOC 2010 dataset and the
skeletons were predicted by the method in [70]

for pose estimation [74] with much less parameters than [73] can localize the people
from images. As a result, themodel for pose estimation ismore robust to the variances
in scales and we adopt such a model to detect people and evaluate their scales based
on Algorithm 2 (Fig. 7).

Constructing a Convolutional Neural Network with a Suitable … 253

Algorithm 2: Pose estimation on instances of different scales.

Input: Images with people in all scales.

Output: Predicted skeletons describing poses.

1 Directly apply the model [74] on each input image.

2 Divide the results from Step 1 into 3 categories:

1. The predicted skeletons occupy a region that is large enough in the image (The

width of the predicted region is no less than one fifth the width of the image. The

height of the predicted region is no less than a half of the image).

2. The area of the predicted region is smaller than the threshold which is set in the

above category but greater than 0. In this case, crop a rectangle region from the

input image and enlarge it. The cropped region centers at the centroid of the

detected region.

3. If nothing is detected. Then crop five regions from the input image according to

the strategy in Fig. 7 (b) and enlarge the regions. The five regions are equally

sized. If nothing can be detected from the cropped regions. Iteratively conduct

the strategy iteratively until targets are successfully detected.

3 Assign a tight bounding box for each detected person and record the relative size of

each box with respected to the width and height of the input image.

(a)

(b)

Fig. 7 The strategy of pose estimation on small targets. a Pose estimation for targets in a normal
size. It is a one-step operation.bFor small targets, detection is likely to fail in the Step 1 inAlgorithm
2. In that case, five regions which are most probable to contain targets are cropped and enlarged.
In this example, the five cropped regions are highlighted in green, yellow, white, red and purple.
Detection in the red region is successful in Step 2 in Algorithm 2. If detection still fails, iterative
cropping and detection are conducted

254 Y. Jiang and Z. Chi

According to Algorithm 2, the proportions that targets take up in images can be
computed. We also conduct analysis on the distribution of the proportions. The more
even the distribution is, the more variances there are in the scales of targets, and the
harder the task becomes. Figure 8 shows the distribution of proportions that objects
take up in images. The horizontal axis denotes the proportions of area in images that
are taken up by targets, the vertical axis denotes the percentage of images that satisfy
the conditions. From Fig. 8a it can be seen that training images include objects of all
scales.

Fig. 8 Percentages of objects that take up different proportions of areas in images. a The overall
dataset for training and test [48] with 3,533 images. b 1,489 images are sampled from the dataset,
the images are with similar scales. c Another 1,489 images with greater divergence in scales are
sampled

Constructing a Convolutional Neural Network with a Suitable … 255

Table 3 Comparison on the
difficulties of subsets

Subset for training and test mIOU (%)

Subset 1 shown in Fig. 8b 59.47

Subset 2 shown in Fig. 8c 43.26

In can be seen that the images in the subset in Fig. 8b include the objects with
similar scales and those in the subset in Fig. 8c contain the objects of significantly
different scales. We conducted experiments on the two subsets. For both subsets,
a random division was performed with 70% for training and 30% for testing. The
same segmentation model based on VGG-16 was used and initialized in the same
way. Batch size was set to 10 and 20,000 iterations were conducted for training. It
is shown in Table 3 that the subset (b) is easier for the model to fit well. As a result,
scale variance is an important factor influencing the complexity of a segmentation
task.

3.1.2 Methods Based on the Variances in Locations

The evaluation using the variance in locations is done in the similar way. The distribu-
tion of translations of objects in images is computed. The more even the distribution
is, the harder a task becomes. A task becomes easier when objects in all images are
of similar translations.

3.1.3 Methods Based on the Consistency of Predictions from Different
Models

We also propose a third method for evaluating the complexity of a dataset: using the
consistency in the predictions from different models. In our case, the consistency
between a human parsing model and a model for pose estimation is evaluated. Both
the model for pose estimation and that for human parsing focus on predicting the
profiles of persons. As a result, we can generate the profile of a person by conducting
dilation on the predicted skeletons. For a task that is simple enough, both models
can perform well and thus the profiles predicted by them should be similar. If a
task becomes difficult and contains small objects or occlusions, one of the models
may fail and cause the discrepancy between their predictions. For a task that is
difficult enough, both models may fail in different ways and it is more likely that
their predictions are dissimilar. As a result, the similarity in the predictions from both
models can help us judge the difficulty of a task.

256 Y. Jiang and Z. Chi

3.2 Summary

This section proposes three methods to evaluate the difficulty of a segmentation task.
This is especially useful when a practical dataset is not as complex as the training
dataset. In that case, we can use the similarity in scales, locations or the consistency
in predictions to choose a subset from training data whose complexity matches that
of a practical scenario well. A smaller model can be trained to perform well enough
in the practical scenario. More importantly, our work provides a way to justify the
validity of techniques for data augmentation. If the complexity of a dataset does not
increase after data augmentation, the data augmentation is useless.

4 Optimization of Model Capacity

4.1 Methodology

4.1.1 Capacity Optimization by Improving the Orthogonality Between
Kernels in a CNN

In a CNN, different kernels within the same layer extract complementary cues that
address the target task. As was discussed in [61], the training of a CNN can be
divided into a fitting phase and a compression phase. In the compression phase,
the mutual information between hidden representations and inputs drops while the
mutual informationbetweenhidden representations andground truth labels increases.
The representations with less features about inputs generalize better. As a result, the
mutual information between hidden representations and labels is a decisive factor in
determining the performance of a CNN model.

It is sure that for one convolutional layer, the more independent kernels are, the
less channels are required to obtain a fixed amount of information. As a result, inde-
pendent kernels can compose a more compact but as efficient feature representation
compared with correlated kernels. Less parameters are required and its capacity can
be better matched to a task. Besides the optimization on capacity, the orthogonality
between kernels also shows an important influence on the training process as well
as the performance of a CNN. This has been discussed in [3].

For a CNN with L layers, suppose the number of input channels to the l −
th(1 ≤ l ≤ L) layer is d and the number of output channels is n. x denotes the
input to the layer and h = Wlx where Wl is the weight matrix, Wl ∈ R

n×d and
WlWT

l = In×n . As is usually the case, we substract inputs by their mean values and
normalize the results to be within [−1, 1]. x has the properties of zero means and
unit covariances: Ex[x]=0 and cov(x) = σ 2I. Then

Eh[h] = WT
l Ex[x]=0 (9)

Constructing a Convolutional Neural Network with a Suitable … 257

The covariance of h can be computed as

cov(h) = Eh[h − Eh[h]]2

= Ex[Wl(x − Ex[x])]2

= Ex[Wl(x − Ex[x])] · Ex[Wl(x − Ex[x])]T

= Wl Ex[(x − Ex[x])] · Ex[(x − Ex[x])]WT
l

= Wl cov(x)WT
l

= σ 2WlWT
l

= σ 2 (10)

For networks with ReLU non-linearities, (9) can be achieved byBatchNormalization
layers and Scale layers. For other types of non-linearities such as tanh, (9) and (10)
can be directly achieved. As a result, orthogonal weight matrices can maintain the
properties of normalization and de-correlation between channels, according to [75].
As is discussed in [76], the normalized and de-correlated activations contribute to
the improvement on the conditioning of the Fisher information matrix of the weights
in each layer, and the better conditioning accelerates the learning process of neural
networks. For the l-th(1 ≤ l ≤ L) layerwithweightmatrixWl and input x, the Fisher
information matrix is denoted as:

FWl = Ex∼p(x)

{
Ey∼p(y|x,Wl)

[(
∂ log p(y|x,Wl)

∂Wl

)(
∂ log p(y|x,Wl)

∂Wl

)T
]}

(11)

For ease of computation, we discretize both the input x and the output from the
nonlinear function y into bins. In the case of binary classification, the possible values
of y lie in two bins. p(y = 1|x,Wl) = fl(Wlhl−1 + bl) and fl() is the nonlinear
function. Equation (11) can be converted to

FWl = Ex∼p(x)

{
Ey∼p(y|x,Wl)

[
vec

(
δlhT

l−1

)
vec

(
δlhT

l−1

)T]}
(12)

where δl denotes the back-propagated gradient through fl() and vec(X) denotes the
vector containing all the elements in matrix X. It is a column vector concatenating
the transposed version of all rows in X. Based on the independence between δl and
hl−1, (12) can be converted to

FWl (km, ln) = Ex∼p(x)
{
Ey∼p(y|x,Wl)[δl(k)δl(l)]

}
Ex∼p(x)

[
hl−1(m)hl−1(n)

]
(13)

FWl (km, ln) evaluates the statistical correlation between the (k,m) − th entry and
the (l, n)− th entry in matrixWl . The conditioning of FWl (km, ln) can be improved
by the following constraint:

258 Y. Jiang and Z. Chi

Table 4 Influences on mIOU (%) brought by reducing channels

Method mIOU (%)

Original segmentation model (VGG-16 based) [50] 56.53

Segmentation module with conv5_3 compressed using the method in 4.1.1 56.57

Segmentation module with conv5_3 and conv5_2 compressed using the method in
4.1.1

56.48

Ex∼p(x)
[
hl−1hT

l−1

] = I (14)

According to (9) and (10), orthogonalweightmatrices can contribute to (14)which
improves the conditioning of Fisher information matrices and thus accelerates the
convergence of learning. For the first term in (13), it is discussed in [76] that the
possible correlations brought by nonlinear functions such as ReLU can be ignored.

Moreover, if n = d forWl ∈ R
n×d , we haveWT

l Wl = WlWT
l = I and ‖h‖=‖x‖.

The values of gradient can also be maintained:

∥∥∥∥
∂L

∂x

∥∥∥∥ =
∥∥∥∥
∂L

∂h
W

∥∥∥∥ = ∂L

∂h
WWT ∂L

∂h

T

= ∂L

∂h
∂L

∂h

T

=
∥∥∥∥
∂L

∂h

∥∥∥∥ (15)

So orthogonal filters helps to keep the stability of both the norms of activations and
the gradients.

In our work, better convergence (higher accuracy as is shown in Table 4) and the
reduction in the number of feature channels are achieved at the same time. Different
from [3] which constructed an orthogonal set of kernels from random initialization,
we pre-trained a CNN on the human parsing task and then select a most compressed
set of orthogonal kernels that span almost the same space as the pre-trained kernels.
The kernels in the compressed set is half as many as the original set of kernels.
The method for reducing the number of kernels is based on [75]. It produces a set
of orthogonal kernels and we select half of them which can best explain for the
variances in the pre-trained kernels.

A set of kernels with less elements than the set in the pre-trained layer is achieved
with two advantages: (1) the number of parameters is reduced with distinguished
features not being reduced and (2) better orthogonality ensures better training. In our
experiments, the numbers of channels in the last two layers of the feature extractor
in the pre-trained model [50] are reduced by a half. Table 4 shows that performance
will not be influenced by compression.

4.1.2 Capacity Optimization by Reducing the Dependency Among
Kernels in CNNs

Besides the number of convolutional kernels, the dependency among pre-trained
kernels is also an important factor indicating the complexity of a task. For a fixed

Constructing a Convolutional Neural Network with a Suitable … 259

number of convolutional kernels, the more complex the task is, the more non-linear
operations should be conducted on discriminative features, and more independent
kernels are required to performwell.Wepropose tofirstly train aCNNmodel on a task
to achieve the highest possible accuracy, then evaluate the number of independent
components in the set of pre-trained kernels using principal component analysis
(PCA) [77]. The kernels of a layer are regarded as random variables in a high-
dimensional space. If more components are required to account for the variability in
the variables, the task is more complex and vice versa.

Suppose the input to a layer has M channels and the number of output channels
is N . The weights in the layer includes M × N kernels. The kernels are formed as
vectors. The size of a vector is 1×K 2 for a K×K kernel. N kernels are organized into
a K 2×N matrixX. We will divide our discussion of adjusting the linear dependency
between kernels into two parts. In the first part, the way of initializing the weights in
the new convolutional layer is addressed. The procedure is described in Algorithm
3 and conducted once for each input channel. In the second part, the structure of the
new convolutional layer with adjustable capacity will be introduced.

In Algorithm 3, the H row vectors in matrix P are linearly independent. Each
of the N kernels in X can be represented by a linear composition of the H vectors.
For a fixed variance ratio, if a larger H is required, the pre-trained kernels are less
dependent to perform well on the task, and thus the complexity of the dataset is
higher. In the extreme case, if H = 1, all the N kernels in X are linearly correlated.

The structure of the new convolutional layer with adjustable capacity is illustrated
in Fig. 9a and b. Figure 9a shows the way of decomposing one traditional layer into
two sub-layers. The second layer includes 1× 1 convolutions for approximating the
original M × N kernels with a linear combinations of M × H principal components.
Figure 9b shows how the proposed convolutional layer is different from a traditional

260 Y. Jiang and Z. Chi

.

.

.

Input M channels

1

2

3

Cin

W H

.

.

.

.

.

.

Set 1

1

2

3

Cin

.

.

.

Set H

1

2

3

Cin

.

.

.

3x3 kernel

3x3 kernel

3x3 kernel

3x3 kernel

.

.

.

W H

1

2

3

Cout

1x1 kernel

1x1 kernel

1x1 kernel
.
.
.

1x1 kernel

1x1 kernel

1x1 kernel

1x1 kernel

1x1 kernel

Intermediate representations
(With an adjustable number of sets)

Output N channels

Sub-layer

(a)

(b)

Fig. 9 The structure of the new convolutional layer with adjustable capacity. a One traditional
layer is decomposed into two sub-layers. The first sub-layer has HCin output channels while the
second has Cout outputs. b The structure of a traditional convolutional layer and the proposed layer
with H = 3 principal components

one. “conv L (3-by-3)” and “conv L+1 (3-by-3)” are conventional convolutional
layers with 3-by-3 convolutional kernels. Each layer has M × N kernels. “conv
L+1 (component i, 3-by-3)” i = 1, 2, 3 are special layers. Each layer has only M
convolutional kernels each of which corresponds to one input feature channel. “conv
L+1 (1-by-1)” is a conventional 1-by-1 layer with 3M × N convolutional kernels.

After pre-training and applying Algorithm 3 on the kernels, the initialized new
convolutional layers undergo the second round of training. In our experiments, if

Constructing a Convolutional Neural Network with a Suitable … 261

the following three conditions are satisfied, the capacity is better matched to the
complexity of the task: (1) H components can explain over 85% of the variances in
the original kernels. (2) The loss in training accuracy is less than 1% after re-training.
(3) After data augmentation and re-training, the loss in test accuracy is below 1%.
Note that the number of discriminative features in the simplified layer is less than
that in the original layer. Moreover, for a network that is either small or large, only
less than 100% of the features are generalizable. As a result, we have to make the
proportion of useful features in the simplified network larger the proportion in the
network before simplification, this can be achieved by data augmentation.

For H = 3, the reduction in the number of parameters is around 67%. If the task
becomesmore complex, a higher H is required. The number of principal components
can be chosen from one to eight. This is due to the fact that in the PCA analysis,
each input variable is a 3-by-3 convolutional kernel with 9 dimensions, and that
the network with nine components has the same capacity as the network before
simplification. The strategy is starting from the median number of eight, that is,
four. If the simplified network with four principal components cannot satisfy the
above-mentioned three conditions, then try five, six, seven, and eight components in
turn; otherwise try one, two and three components in turn. The process is conducted
recursively. For each number of principal components, the network is re-trained and
tested. If none of the simplified networks can perform as well as the original network,
then we have to use the original network for inference. The maximum number of
re-training is four.

4.1.3 Capacity Optimization by Reducing the Redundancy Among
Kernels in Convolutional Layers

Suppose the capacity of a CNN model is more than enough for a task, if the CNN
model is trained in an improper way, or pre-trained on another dataset, redundancy
may appear among convolutional kernels. That is to say, removing some kernels and
related inter-connections brings no harm to performance.

A method of matching the capacity of a CNN to a task is studied by us. It is
implemented by adjusting the number of uncorrelated feature channels.Our proposed
model is trained on the PASCAL VOC 2010 Person Part dataset [48, 78] and the
COCO dataset [32] which include 3,533 images and 80,000 images, respectively.
The datasets are far smaller than the one used in ImageNet competition [79] which
includes more than 1,000,000 images for training. As a result, our model should not
be as complex as the feature extractor in Deeplab-V2 model [50] which is matched
to the complexity of the ImageNet dataset.

It is addressed in [80] that the use of a Gaussian mixture model for modeling the
distribution ofweights in a neural network is appropriate. Eachdata point corresponds
to a kernel and eachGaussian component is a collectionof kernels. In aCNN,different
kernels within one layer correspond to different clues for the task while different
layers correspond to different compositions of clues. The clues and compositions
in a CNN can be clustered based on their similarities. As a result, a CNN can be

262 Y. Jiang and Z. Chi

divided into functional units. The feature channels within the same functional unit
share similar semantic meanings. Whether a functional unit is useful or not for the
task is determined by the influence on the overall performance brought by removing
the unit. We propose to implement this based on the EM algorithm [81] to reduce
the number of functional units. This process can overcome the over-fitting problem
of a CNN model.

Algorithm 4 is conducted once for each layer and firstly on the highest layer
in the feature extractor. Suppose that the input to a certain layer has M channels
and the output has N channels. The M kernels corresponding to each of the N
output channel are concatenated to produce xi , i = 1, . . . , N . X = {x1, . . . , xN }.
A Gaussian mixture model is constructed to cluster the N concatenated vec-
tors into K groups. A functional unit denotes an assembling of similar vectors.
μ = {μ1,μ2, . . . ,μK },� = {�1,�2, . . . ,�K } and π = {π1, . . . , πK } denote
the parameters of the K clusters where μi , i = 1, . . . , K denote the mean vectors,
Σi , i = 1, . . . , K denote the covariance vectors and πi , i = 1, . . . , K denote the
mixing coefficients.

In the beginning, K = 1. Halving the cluster will cause a great loss in accuracy
because for a large cluster, different functional units are integrated in the cluster and

Constructing a Convolutional Neural Network with a Suitable … 263

the operation of halving a cluster in Step 6 leads to a complete loss of some functional
units. The number of clusters K increases until each cluster represents one functional
unit and halving one cluster only results in a partial loss of one functional unit. There
are two loops in the algorithm. In the outer loop, K increases and the number of
elements in each cluster decreases. The system accuracy will not drop significantly
since parts of all functional units are still kept. The threshold for evaluating the drop
in accuracy is chosen to be 3%.

As is mentioned above, if the removal of a functional unit bring no harm to
performance, it can be removed. Table 5 shows the influences on performance of
removing each functional unit in layers conv6_1, conv6_2 and conv6_3 from the
network in [50]. The network is re-trained an augmented dataset after the removal
of each functional unit.

As is shown in Table 5, there is one functional unit in each layer whose absence
brings no harm to test accuracy as well as training accuracy. The removal of the 5th
unit in conv6_2 contributes to an improvement in test accuracy and a decrease in
training accuracy. It can be inferred that the unit has caused over-fitting. Remov-
ing functional units and re-training is carried out iteratively until all the remaining
functional units are necessary for the task. Table 6 shows the influences on perfor-

Table 5 The changes in test mIOU (%)when dropping functional units in layers conv6_1, conv6_2,
conv6_3

conv6_1 conv6_2 conv6_3

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

Complete 0.00 0.00 0.00 0.00 0.00 0.00

Unit 1 −0.33 −0.87 −0.14 −0.10 −0.14 −3.03

Unit 2 −0.02 −0.08 −0.09 −0.97 −0.09 −0.64

Unit 3 −0.05 −0.01 −1.04 −3.19 +0.00 +0.00

Unit 4 −0.58 −1.71 +0.00 −0.32 +0.00 +1.02

Unit 5 −1.11 −4.20 −0.01 +0.18 −0.29 −1.04

Unit 6 +0.00 +0.00 −0.36 −1.16 −0.03 −0.83

Unit 7 −0.01 −0.52 −0.01 −0.33 −0.44 −1.31

Unit 8 −0.14 +0.00 +0.00 +0.00 −0.41 −1.66

Table 6 The influences on
capacity of models and
performance brought by
reducing the dependency and
redundancy among
convolutional kernels.
(Performance is evaluated by
mIOU (%)

Module/model mIOU (%) Number of parameters

Deeplab-V2 [50] 64.94 13.161e+7

Deep Lab-V2 [50] with
capacity reduction

65.97 11.257e+7

The segmentation
module [68]

65.07 6.559e+7

The simplified
segmentation module

67.43 1.589e+7

264 Y. Jiang and Z. Chi

mance brought by the methods of reducing the dependency and redundancy among
convolutional kernels. The experiments are conducted on the segmentation module
addressed in [68] as well as the Deeplab-V2 model [50]. The training data comes
from the PASCAL VOC 2010 Person Part Dataset for body part segmentation [48,
78]. The dataset includes annotations on 3,533 images where 1,716 images are used
for training. The ground truth labels are segmentation masks. The maximum number
of iterations of training varies from 20,000 to 70,000. Training is terminated when
the average training accuracy does not change in two consecutive epochs. Batch size
is set to 6. As the number of feature maps reduces, regression needs more training
iterations. The reduction in capacity is conducted in two steps: (1) Applying the
above-mentioned methods to simplify the models/modules. The method for reduc-
ing redundancy is conducted firstly and the one for reducing dependency secondly.
The former is suitable for simplifying a CNN which has trained on a small dataset
and/or with great redundancy. The second method is suitable for simplifying a CNN
which has no clear over-fitting problem or which has already been simplified by the
first method. (2) Apply the teacher-student method addressed in Sect. 1 to train the
small models on a much larger training data with the predictions of larger network
as ground truth.

It can be inferred from Table 6 that the proposed methods for reducing the depen-
dency and redundancy among kernels can be applied to improve performance and
reduce the complexity of models. The removed functional units are only useful for
performing segmentation on the images from the training data, but not useful for
the segmentation on the test data. The test accuracy is measured after removing the
redundant functional units and re-training.

The efficiency can be improved significantly by capacity optimization. Moreover,
the reduction in time during inference over-weights the extra time spent on simpli-
fying the model. This is due to the fact that training is conducted for once while
inference is conducted for countless times.

4.2 Summary

In this section, three methods have been proposed to optimize the capacity of a CNN
model for a human parsing task. The orthogonality among convolutional kernels,
redundancy in convolutional layers and the dependency among kernels are studied
to reduce the number of parameters in human parsing models. More importantly,
the simplified models even slightly outperform original models. In other words, the
capacity of a CNN model is optimized and a better convergence is achieved.

Constructing a Convolutional Neural Network with a Suitable … 265

5 Conclusion and Future Work

In this chapter, we introduce the work on constructing a CNN with suitable capacity
and architecture for a semantic segmentation task.We have discussed our threemajor
contributions to architectural design and training of convolutional neural networks in
the context of human parsing tasks. Firstly, we proposed novel training strategies and
schemes for data augmentation. Secondly, we proposed the methods for evaluating
the complexity of a segmentation task by analyzing different types of variances as
well as the consistency in predictions from different models. Thirdly, we proposed
three architectures of convolutional layers to reduce computational burdens while
maintaining performance. This chapter echoes very well the theme of this volume
“Deep Learning: Architectures, Algorithms, andApplications”. Our future work will
focus on the quantitative evaluation on the manifold of data which will help to guide
the development of machine learning models.

References

1. Lee, J., Xiao, L., Schoenholz, S.S., Bahri, Y., Sohl-Dickstein, J., Pennington, J.: Wide neural
networks of any depth evolve as linear models under gradient descent (2019). arXiv preprint
arXiv:1902.06720

2. Rolnick, D., Tegmark, M.: The power of deeper networks for expressing natural functions. In:
International Conference on Learning Representations (2018)

3. Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S.S., Pennington, J.: Dynamical isometry
and a mean field theory of CNNs: how to train 10,000-layer vanilla convolutional neural
networks (2018). arXiv preprint arXiv:1806.05393

4. Pierre, B., Roman, V.: Neuronal capacity. In: NIPS (2018)
5. Lei, N., Luo, Z., Yau, S.T., Gu, D.X.: Geometric understanding of deep learning (2018). arXiv

preprint arXiv:1805.10451
6. Krizhevsky, A., Hinton, G.: Convolutional deep belief networks on cifar-10. In: Unpublished

manuscript (2010)
7. Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Li, F.F.: Large scale visual recognition

challenge 2012. Available: http://www.image-net.org/challenges/ILSVRC/2012/ (2012)
8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

9. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recog-
nition (2014). arXiv preprint arXiv:1409.1556

10. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision
and Pattern Recognition (2015)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

12. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, vol. 1. pp. 3 (2017)

13. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for
deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5987–5995 (2017)

http://arxiv.org/abs/1902.06720
http://arxiv.org/abs/1806.05393
http://arxiv.org/abs/1805.10451
http://www.image-net.org/challenges/ILSVRC/2012/
http://arxiv.org/abs/1409.1556

266 Y. Jiang and Z. Chi

14. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks (2017). arXiv preprint arXiv:1709.
01507

15. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable
image recognition (2017). arXiv preprint arXiv:1707.07012

16. Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L.J., Li, F.F., Yuille, A., Huang, J., Murphy, K.:
Progressive neural architecture search (2017). arXiv preprint arXiv:1712.00559

17. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier archi-
tecture search (2018). arXiv preprint arXiv:1802.01548

18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: International Conference on Machine Learning (2015)

19. He, K., Zhang, X., Sun, J.: Identity mappings in deep residual networks. In: European Confer-
ence on Computer Vision, pp. 630–645 (2016)

20. Simon, M., Rodner, E., Denzler, J.: ImageNet pre-trained models with batch normalization
(2016). arXiv preprint arXiv:1612.01452, https://github.com/cvjena/cnn-models

21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual networks (2015). Available: https://github.
com/KaimingHe/deep-residual-networks

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual networks with 1 K layers (2016). Available:
https://github.com/KaimingHe/resnet-1k-layers

23. He, K., Zhang, X., Ren, S., Sun, J.: Trained ResNet torch models (2016). Available: https://
github.com/facebook/fb.resnet.torch/tree/master/pretrained

24. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT press (2016)
25. Kurakin, A., Goodfellow, I., Bengio, S., Dong, Y., Liao, F., Liang, M., Liang, J.: Adversarial

attacks and defences competition (2018). arXiv preprint arXiv:1804.00097
26. Everingham,M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCALVisual

object classes challenge 2012 (VOC2012) results. Available: http://www.pascal-network.org/
challenges/VOC/voc2012/workshop/index.html (2012)

27. Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic bound of learning
rate (2019). arXiv preprint arXiv:1902.09843

28. Anonymous: Shallow learning for deep networks. In: Under double-blind review (2018)
29. Zhou, Z.H.: A brief introduction to weakly supervised learning. Nat. Sci. Rev. 5(1), 44–53

(2017)
30. Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Self-supervised structure-sensitive learning

and a new benchmark for human parsing. In: Proceedings of the IEEEConference on Computer
Vision and Pattern Recognition, pp. 932–940 (2017)

31. Gong, K., Liang, X., Li, Y., Chen, Y., Yang, M., Lin, L.: Instance-level human parsing via part
grouping network. In: Proceedings of the European Conference on Computer Vision (2018)

32. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Zitnick, C.L.: Microsoft
coco: common objects in context. In: Proceedings of ECCV (2014)

33. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for
semantic understanding of street scenes. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 4990–4999 (2017)

34. Zhou, B., Zhao, H., Puig, X., Xiao, T., Fidler, S., Barriuso, A., Torralba, A.: Semantic under-
standing of scenes through the ADE20K dataset. Int. J. Comput. Vision 1–20 (2016)

35. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Schiele, B.: The
cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer
Vision and Pattern Recognition (2016)

36. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of IEEE CVPR (2014)

37. Uijlings, J., van de Sande, K., Gevers, T., Smeulders, A.: Selective search for object recognition.
Int. J. Comput. Vision 104(2), 154–171 (2013)

38. Li, J., Zhao, J., Wei, Y., Lang, C., Li, Y., Sim, T., Yan, S., Feng, J.: Multiple-human parsing in
the wild (2017). arXiv:1705.07206

39. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1707.07012
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1612.01452
https://github.com/cvjena/cnn-models
https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/resnet-1k-layers
https://github.com/facebook/fb.resnet.torch/tree/master/pretrained
http://arxiv.org/abs/1804.00097
http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1705.07206

Constructing a Convolutional Neural Network with a Suitable … 267

40. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: Available: http://
www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html (2011)

41. Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.W., Heng, P.A.: H-DenseUNet: hybrid densely con-
nected UNet for liver and liver tumor segmentation from CT volumes (2017). arXiv preprint
arXiv:1709.07330

42. Kirillov, A., He, K., Girshick, R., Rother, C.: Panoptic segmentation (2018). arXiv preprint
arXiv:1801.00868

43. de Geus, D., Meletis, P., Dubbelman, G.: Panoptic segmentation with a joint semantic and
instance segmentation network (2018). arXiv preprint arXiv:1809.02110

44. Zheng, S.: Conditional random fields as recurrent neural networks. In: Proceedings of IEEE
ICCV (2015)

45. Li, X., Zhao, L., Wei, L., Yang, M.H., Wu, F., Zhuang, Y., Ling, H., Wang, J.: DeepSaliency:
multi-task deep neural network model for salient object detection. IEEE Trans. Image Process.
25(8), 3919–3930 (2016)

46. Xia, F., Wang, P., Chen, X., Yuille, A.L.: Joint multi-person pose estimation and semantic
part segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017)

47. Jiang, Y., Chi, Z.: A fully-convolutional framework for semantic segmentation. In: Proceedings
of IEEE DICTA (2017)

48. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.L.: Detect what you can:
detecting and representing objects using holistic models and body parts. In: Proceedings of
IEEE CVPR (2014)

49. Chen, L.C., Barron, J.T., Papandreou, G., Murphy, K., Yuille, A.L.: Semantic image segmenta-
tion with task-specific edge detection using cnns and a discriminatively trained domain trans-
form. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2016)

50. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Alan, L.: Deeplab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE
Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

51. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic
image segmentation (2017). arXiv preprint arXiv:1706.05587

52. Li, Q., Arnab, A., Torr, P.H.: Weakly-and semi-supervised panoptic segmentation. In: Proceed-
ings of the European Conference on Computer Vision, pp. 102–118 (2018)

53. Dai, J., He, K., Sun, J.: Boxsup: exploiting bounding boxes to supervise convolutional networks
for semantic segmentation. In: Proceedings of IEEE ICCV (2015)

54. Zhang, L., Yang, Y., Gao, Y., Yu, Y., Wang, C., Li, X.: A probabilistic associative model for
segmenting weakly supervised images. IEEE Trans. Image Process. 23(9), 4150–4159 (2014)

55. Zamir, A.R., Sax, A., Shen,W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling
task transfer learning. In: Proceedings of the IEEEConference on Computer Vision and Pattern
Recognition (2018)

56. Donahue, J., Krahenbuhl, P., Darrell, T.: Adversarial feature learning (2016). arXiv preprint
arXiv:1605.09782

57. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Massachusetts, Cam-
bridge (2016)

58. Wang, Y.X., Ramanan, D., Hebert, M.: Growing a brain: fine-tuning by increasing model
capacity. In: Proceedings of IEEE CVPR (2017)

59. Wang, Y., Xie, L., Liu, C., Qiao, S., Zhang, Y., Zhang, W., Yuille, A.L.: Sort: second-order
response transform for visual recognition. In: Proceedings of IEEE ICCV (2017)

60. Sigaud, O., Droniou, A.: Towards deep developmental learning. IEEE Trans. Cognit. Dev. Syst.
8(2), 99–114 (2016)

61. Tishby, N., Zaslavsky, N.: Deep learning and the information bottleneck principle. In: Infor-
mation Theory Workshop (ITW) (2015)

62. Gabrié, M., Manoel, A., Luneau, C., Barbier, J., Macris, N., Krzakala, F., Zdeborová, L.:
Entropy and mutual information in models of deep neural networks (2018). arXiv preprint
arXiv:1805.09785

http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html
http://arxiv.org/abs/1709.07330
http://arxiv.org/abs/1801.00868
http://arxiv.org/abs/1809.02110
http://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1605.09782
http://arxiv.org/abs/1805.09785

268 Y. Jiang and Z. Chi

63. Guss, W.H., Salakhutdinov, R.: On characterizing the capacity of neural networks using alge-
braic topology (2018). arXiv preprint arXiv:1802.04443

64. Zagoruyko, S., Komodakis, N.: Wide residual networks (2016). arXiv preprint arXiv:1605.
07146

65. Krizhevsky, A., Hinton, G.E.: LearningMultiple Layers of Features fromTiny Images. Toronto
(2009)

66. Gong, K., Liang, X., Zhang, D., Shen, X., Lin, L.: Look into person: self-supervised structure-
sensitive learning and a new benchmark for human parsing. In: IEEE Conference on Computer
Vision and Pattern Recognition (2017)

67. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE
Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

68. Jiang, Y., Chi, Z.: A CNN model for semantic person part segmentation with capacity opti-
mization. IEEE Trans. Image Process. (2018)

69. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). arXiv
preprint arXiv:1503.02531

70. Cao, Z., Hidalgo, G., Simon, T., Wei, S., Sheikh, Y.: Openpose: realtime multi-person 2D pose
estimation using part affinity fields (2018). arXiv preprint arXiv:1812.08008

71. Zhang, R., Phillip, I., Alexei, A.E.: Colorful image colorization. In: European Conference on
Computer Vision (2016)

72. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger (2017). arXiv preprint arXiv:1612.
08242

73. Zhao, H., Shi, J., Qi, X.,Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEEConference
on Computer Vision and Pattern Recognition (2017)

74. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2d human pose estimation: new bench-
mark and state of the art analysis. In: Proceedings of IEEE CVPR (2014)

75. Huang, L., Liu, X., Lang, B., Yu, A.W., Wang, Y., Li, B.: Orthogonal weight normalization:
solution to optimization over multiple dependent stiefel manifolds in deep neural networks. In:
Thirty-Second AAAI Conference on Artificial Intelligence (2018)

76. Desjardins, G., Simonyan, K., Pascanu, R., Kavukcuoglu, K.: Natural neural networks. In:
Neural Information Processing Systems (2015)

77. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat.
2(4), 433–459 (2010)

78. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136
(2015)

79. Deng, J., Berg, A., Satheesh, S., Su, H., Khosla, A., Li, F.F.: Available: http://www.image-net.
org/challenges/LSVRC/2012/ (2012)

80. Nowlan, S.J., Hinton, G.E.: Simplifying neural networks by soft weight-sharing. Neural Com-
put. 4(4), 473–493 (1992)

81. Moon, T.K.: The expectation-maximization algorithm. IEEESignal Process.Mag. 13(6), 47–60
(1996)

http://arxiv.org/abs/1802.04443
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1812.08008
http://arxiv.org/abs/1612.08242
http://www.image-net.org/challenges/LSVRC/2012/

Using Convolutional Neural Networks
to Forecast Sporting Event Results

Mu-Yen Chen, Ting-Hsuan Chen and Shu-Hong Lin

Abstract Sporting events like the FIFA World Cup and the World Baseball Classic
have increased in popularity, and the enthusiasm with which these competitions are
reported and commented on is evidence of their wide-reaching influence. These
games are popular discussion topics. Many who follow sports are only casual fans,
but even these “temporary” fans have the same expectations that all fans do: the
teams they support should be able to win. This study selects the National Basketball
Association (NBA) to represent competitive ball sports. Predictions herein are based
on the examination and statistical analysis of previous records of NBA games. This
research integrates the field of sports outcome predictions with the methodology
of deep learning via convolutional neural networks. Training and predictions are
modelled on statistics gleaned from a total of 4,235 games over the past three years.
We analyze the training results of a variety of model structures. While previous
studies have applied convolutional neural networks to image or object recognition,
our study proposes a specific encoding method that is integrated with deep learning
in order to predict the results of future games. The prediction accuracy rate of the
model herein is approximately 91%, while the deviation is approximately 0.2. These
strong results confirm the validity of our designated encoding method.

Keywords Sports prediction · Deep learning · Convolutional neural networks ·
National basketball association (NBA)

M.-Y. Chen (B) · S.-H. Lin
Faculty of Information and Management, National Taichung University of Science
and Technology, Taichung, Taiwan
e-mail: mychen.academy@gmail.com

S.-H. Lin
e-mail: abc9652000@gmail.com

T.-H. Chen
Faculty of Finance, National Taichung University of Science and Technology, Taichung, Taiwan
e-mail: thchen@nutc.edu.tw

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_9

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_9&domain=pdf
mailto:mychen.academy@gmail.com
mailto:abc9652000@gmail.com
mailto:thchen@nutc.edu.tw
https://doi.org/10.1007/978-3-030-31756-0_9

270 M.-Y. Chen et al.

1 Introduction

Whenever the FIFA World Cup or the World Baseball Classic tournaments begin,
the number of devoted or casual fans around the globe rises significantly throughout
the season. Online search trends in connection with the games also surge sharply.
Based on the hot search terms shown in Google’s Trends service, it is obvious that
competitive sports are of great interest tomost people, especially during international
tournament seasons. Figure 1 illustrates a Google hot trend for the search term “soc-
cer” in July 2018 [1], showing how the search trend soared upward in the middle of
June 2018 in connection with the FIFA World Cup.

Business Weekly [2] reported that the Hokkaido Nippon-Ham Fighters, a profes-
sional baseball team in Japan, scouted and identified the most suitable players for
each position by using the Baseball Operation System (BOS) to analyze its player’s
capabilities. Sports vary in terms of types, rules and skills, and are also subject to
various factors that are difficult to quantify (e.g., weather conditions, morale, etc.).
In order to exclude a variety of unstable factors, this study selected the games of the
National Basketball Association (NBA) as the subject of analysis, because they are
less affected by factors that cannot be controlled, and the data are publicly available.
Fong [3] predicted the outcomes and scores ofMajor League Baseball (MLB) games.
However, since too many variables were taken into consideration, the model results
tended to fail to converge, reducing the accuracy of the predictions. Therefore, we
chose NBA games, which are subject to fewer determinants. The NBA is also the
most prestigious of the professional basketball associations.

The concept of deep learning has gained ground rapidly in recent years. After
the computer Alpha Go defeated South Korean Go grandmaster Lee Sedol, deep
learning became even more well known around the world. However, Alpha Go was
soon superseded byAlphaGoZero, which defeatedAlphaGowhen the two programs
played against each other. This shows how rapidly deep learning has been developed
and optimized.

While deep learning has been applied in studies of image/object recognition (e.g.,
board game notations, paintings, people/things/objects in pictures, etc.), deep learn-
ing has also been commonly applied to feature extraction. Rarely have previous
researchers used the deep learning method to predict the outcomes of competitive
sports. Such outcomes are more commonly predicted via the algorithms of statistical
regression analysis, artificial neural networks, or support vector machines. Thus, this

Fig. 1 Google hot trend (Keyword: Soccer in Chinese)

Using Convolutional Neural Networks … 271

study has adopted the deep learning method to predict the outcomes of competitive
sports.

We use the records of NBA games from the past three years as the subject of
analysis and examination, and we model them in accordance with the deep learning
method. The objectives of this research are as follows:

• To reduce the amount of data required for predicting the outcomes.
• To convert the format of the original data to make it a proper fit for deep learning.
• To compare the accuracy of the prediction results from models with different
structures.

2 Literature Review

2.1 Convolutional Neural Network Architecture

A convolutional neural network is a class of feed-forward artificial neural networks.
Its neurons can respond to peripheral units within a specific area of coverage. Its
application to visual imagery has yielded excellent results. The structure of the con-
volutional neural network mimics the neurons in the biological brain. Hubel and
Wiesel [4] first noticed that when a cat is visually observing different things, the
neurons in the brain react differently. Fukushima [5] proposed an unsupervised con-
ceptual network, which was able to learn geometrical variations in graphics on its
own.

Indolia et al. [6] presented the architecture of the convolutional neural network in
detail. The convolutional neural network ismainly composedof several structures: the
input layer, convolutional layers, pooling layers, activation function, fully connected
layers and loss function, and the output layer. This architecture is shown in Fig. 2.

The main structure in a convolutional neural network consists of one or more
convolutional layers with a fully connected layer at the end. It also includes the
associatedweights and the results derived from pooling layers. This structure enables

Fig. 2 Architecture of convolutional neural network

272 M.-Y. Chen et al.

the convolutional neural network to make use of the two-dimensional structural
characteristics of the data. The convolutional neural network can be trained via back
propagation, and thus needs fewer parameters than other deep networks.

2.2 Related Research Regarding Sports Predictions

Research regarding prediction requires access to historical data. Feature extraction
from existing data allows a future target to be predicted. Sports predictions are no
exception.

Craig et al. [7] proposed the relationship between a team’s offense and the ambient
temperature inAmerican football games, and analyzed it usingmulti-level regression
analysis. The adopted dataset was provided by the National Football League (NFL).
The results showed that the level of aggression of the football team’s offense has
a positive linear relationship with the ambient temperature. The higher the ambient
temperature, the greater the intensity with which the offense plays. However, this
applied to home teams only.

Maszczyk et al. [8] used four factors to predict javelin throw distances: the
first-step distance in throwing the javelin, the strength of the body and arms, the
strength of the abdominal muscles, and the grip force of the hand. A regression
model and an artificial neural network model were established. Eventually, the dif-
ferences between their results were compared. The deviation of the artificial neural
network was 16.77 m on average, and that of the regression model was 29.45 m
on average, indicating that the artificial neural network had much better predictive
capability. This also proved that the prediction results of the artificial neural network
were better than those of the widely used regression model.

Bačić [9] used embedded sensors to test a golf swing application. The golf player’s
current physiological state and the flight path of the golf ball were recorded for
each swing. These data were quantified via HMMA (Human Motion Modeling and
Analysis). The golf ball paths were predicted using the swing lengths and the attack
angles.

Bunker and Thabtah [10] noted that machine learning was a very promising
method in the domains of classification and prediction. The large amounts of money
involved in wagers on sporting events demand highly precise predictions. The
researchers rigorously reviewed the literature on machine learning. The artificial
neural network was then adopted as a novel framework by which machine learning
can be used as a learning strategy.

Kipp et al. [11] established an artificial neural network model to predict the net
joint moments (NJM) of the hip, knees and ankles when a weightlifter is lifting
weights. Data from seven collegiate weightlifters were applied to training and test-
ing. Although the prediction performance levels were lower than those in previous
literature, the barbell motion and the time series data of NJM were similar to those
of past high-level athletes. This also proved that the prediction results were quite
stable.

Using Convolutional Neural Networks … 273

The extant literature has shown that research into any sort of prediction is heavily
dependent on historical data. Such data may also have a large number of columns. To
predict well, important features must be extracted. This study uses NBA data. After
selecting more important columns from the data, a convolutional neural network is
used to conduct feature extraction and model training.

3 Research Methods

3.1 Development Environment

The hardware for this research was a PC equipped with a 64-bit Win7 operating sys-
tem, with a 4-core CPU and 8 GBRAM.We used the Python programming language
to collect and preprocess game data. We also used an Oracle VM VirtualBox vir-
tual machine for deep learning development and model establishment. The operating
system was Linux and the programming language was also Python, with a Pytorch
framework.

3.2 Research Process

This study’s research process can be divided into five major steps: data collection,
data preprocessing, data encoding, data modeling, and performance evaluation. The
research model and process is illustrated in Fig. 3.

• Step 1: Data Collection

The NBA game data was downloaded for analysis from the NBA Taiwan official
website. Figure 4 shows a sample of the original data [12]. Python was used as a data
crawler, collecting game records from the October 2014 to April 2017 time period,
which comprised the past three NBA seasons for a total of 4,235 games. Home teams
had 2,473 wins and 1,762 losses during this period.

• Step 2: Data Preprocessing

Once the Python data crawler had acquired the data, we found that differences in the
numbers of players in many games, as well as non-starters, resulted in missing values
and different numbers of columns. In the data processing stage, the null values in
data fields were filled with a value of 0 to complete the game data for experimental
purposes. We gathered a total of 20 data items for each player, as shown in Table 1.

In 1989, Manley [13] proposed the term EFF (efficiency) to calculate NBA player
performance. EFFwas calculated based on five additive data items (points, rebounds,
assists, steals and blocks) and three subtractive items (missed field goals, missed free
throws, and turnovers).We chose to include only the items that hadmore influence on

274 M.-Y. Chen et al.

Fig. 3 Research model and process

the overall game; thus, turnovers were not factored into the calculation. Regarding
the more influential items in terms of final points, the point calculation for this
study included free throws and three point field goals, which were calculated as
percentages. The percentages of field goals, three point field goals, and free throws
were each calculated by dividing the number of shots made by the number of shots

Fig. 4 The NBA data record of the home team in a single game

Using Convolutional Neural Networks … 275

Table 1 NBA game data columns

Title of column Title of column Title of column Title of column

Minutes played Blocks 3 point field goals
attempted

Offensive rebounds

Points Field goals made 3 point field goals
percentage

Defensive rebounds

Rebounds Field goals attempted Free throws made Turnovers

Assists Field goal percentage Free throws attempted Fouls

Steals 3 point field goals made Free throw percentage Positive/Negative (±)

attempted. Since the numbers of shots made and attempted were already included in
the percentages, these two items were excluded from the calculation. On the other
hand, since the number of rebounds included offensive and defensive rebounds, these
two items were also excluded from the calculation. Since the efficiency value did not
include the number of fouls, this study also excluded that data.

The positive and negative values (±)were the player’s impact on the scorewhen on
the court. When Player A was on the court, and he or a teammate scored 2 points, the
valuewas a+2. Lost pointswere subtracted directly. The positive and negative values
were attached to Player A until he was substituted or the game ended. The positive
and negative values already accounted for the influence of time, so the number of
minutes player was on the court was not included in the calculation. Table 2 shows
the data columns and their calculation methods as used in this research.

Since there was no measuring standard for the final score and statistics in each
match, and overtimes would result in different lengths of time in a typical match, the
maximumvalues of the statisticsmight affect the calculated results. Thus, data needed
to be normalized afterwards. Normalizationwas conducted on a game-by-game basis
by calculating the level of influence of each statistic of each player in a single game.
Theminimum value was 0 and the maximum value was 1. The normalization method
is shown in Eq. (1).

y = x−min(x)

max(x)−min(x)
(1)

Table 2 Game data columns used in this research

Title of columns Calculation method Title of columns Calculation method

Points Additive item Field goal percentage Additive item

Rebounds Additive item 3 point field goals percentage Additive item

Assists Additive item Free throw percentage Additive item

Steals Additive item Turnovers Subtractive item

Blocks Additive item Positive and negative values Additive item

276 M.-Y. Chen et al.

Fig. 5 Schematic diagram of the matrix encoding process

• Step 3: Data Encoding

Since the convolutional neural network has often been used in studies on image
recognition, the corresponding data types did not match the data type of the present
research. At this stage, the player’s comprehensive skill performance levels calcu-
lated after normalization in Step 2 were encoded to conform to the data type of the
convolutional neural network for the benefit of model construction.

The extent of each player’s influence with respect to each column in a single game
was already calculated in Step 2. Subsequently, those normalized columns were cal-
culated. The calculated result could be regarded as the comprehensive performance
evaluation of each player in a single game. With that, the home and visiting team
players were compared one by one, and the comparison results were encoded. The
comprehensive performance value of each player was compared separately from the
perspective of the home team. If the influence of the home team player was greater
than that of the visiting team player, the encoded value was 1; otherwise it was −1.
If the extent of player influence was equivalent, it was encoded as 0. The encoding
process is shown in Fig. 5. The NBA allows amaximum of 16 players to be registered
in a given match; hence, the encoded matrix size was 16 × 16.

• Step 4: Data Modeling

The input data for modeling was the matrix data encoded in Step 3. It was a two-
dimensional 16 × 16 matrix of the final target field, i.e., win and loss. Win or loss
was determined from the perspective of the home team. The result of the game was
encoded as a 1 for a win, and a 0 for a loss.

We then established a convolutional neural network model with different struc-
tures and parameters for the experiments. We expected to construct a better model
by adjusting parameters. Four models of different architectures were established in
this research. To prevent model overfitting, a dropout layer (setup value 10%) was set
after the pooling layer. The detailed architecture settings of the models are shown in
Table 3. These four models conducted 200 training iterations of 10 cross-validations.
Other detailed parameter settings of the models are shown in Table 4.

Using Convolutional Neural Networks … 277

Table 3 CNN architectures under different structures

CNN model architecture Model 1 Model 2 Model 3 Model 4

Convolutional layer 1 2 × 2 2 × 2 2 × 2 5 × 5

Pooling layer 2 2 × 2 5 × 5 2 × 2 2 × 2

Dropout setting 10% 10% 10% 10%

Convolutional layer 2 2 × 2 2 × 2 2 × 2 2 × 2

Pooling layer 2 2 × 2 2 × 2 2 × 2 2 × 2

Dropout setting 10% 10% 10% 10%

Convolutional layer 3 – – 2 × 2 –

Pooling layer 3 – – 2 × 2 –

Dropout setting – – 10% –

Fully connected layer 1 1 1 1

Table 4 Parameter settings
of the CNN model

Parameter values

Training iterations 200

Batch size 32

Learning rate 0.0015

Activation function ReLU

Loss value calculation Cross entropy

Optimizer Adam

• Step 5: Performance Evaluation

The results of the convolutional neural network were evaluated based on differ-
ent architectures, parameters and datasets. The results produced by using different
datasets for experiments were also reviewed and analyzed. We compared the various
results to the artificial neural network to analyze the differences.

3.3 Experiment Design

In addition to the architectural differences, other parameters were also adjusted to
optimize the results of the convolutional neural network. We compared the sizes
between the convolutional layer and the convolution filter in the pooling layer, and
we also adjusted the batch size from 32 to 512. The learning rate was set to 0.0015.
The loss value was calculated via cross entropy. We used the Adam optimizer, which
is more commonly used than the stochastic gradient descent method and can also
update the weights in a more stable manner.

278 M.-Y. Chen et al.

Fig. 6 Horizontally flipped matrix

• Experiment 1

The data content used in Experiment 1 was a two-dimensional matrix encoded by the
coding method of this research. The experiments were performed using the afore-
mentioned convolutional neural networkmodel with different architectures. The data
content contained 4,235 records.

• Experiment 2

The data content used in Experiment 2 was a two-dimensional matrix created by
horizontally flipping Dataset 1. The horizontal flipping concept is depicted in Fig. 6.
The left side of Fig. 6 is the already encoded two-dimensional matrix, while the right
side of Fig. 6 is the matrix result after reversing horizontally.

• Experiment 3

The data content used in Experiment 3 was composed of Datasets 1 and 2 so that
a large amount of data could be used to train the convolutional neural network. We
expected to be able to improve the performance of the model by increasing the data
amount. Dataset 3 had a total of 8,470 entries, the largest data volume of the three
sets.

• Experiment 4

The data used in Experiment 4 was processed by randomly swapping the encoded
two-dimensional matrix by rows and columns. The concept of random swapping
is illustrated in Fig. 7. The left side of Fig. 7 shows the encoded two-dimensional
matrix, in which the red boxes are the columns to be swapped, and the blue boxes
are the rows to be swapped. The right side of Fig. 7 shows the result after random
swapping. Dataset 4 had 4,235 entries.

After experiments were conducted with convolutional neural network models of
different architectures and parameters, in addition to the comparisons between each
model, the results were compared with those of the back propagation neural network.
Weka ver3.8 was used to establish the back propagation neural network environment.

Using Convolutional Neural Networks … 279

Fig. 7 Randomly sequenced matrix

Table 5 Confusion matrix Prediction reality Positive Negative

Positive TP (True Positive) FN (False Negative)

Negative FP (False Positive) TN (True Negative)

3.4 Performance Evaluation

This research used the accuracy and loss of the final experimental prediction as the
evaluation criteria. A confusion matrix was used to calculate accuracy. As shown in
Table 5, Eq. (2) was used to compute accuracy. Loss was calculated via cross entropy
[14]. This computation is shown in Eq. (3). When the loss approached 0, the result
of the model prediction was closer to the actual result. Through the loss values, the
model could also perform back propagation to modify the weights and parameters
inside the model. The loss value did not fully represent the quality of the model. It
could only determine whether the prediction result of the model was close to the
actual values.

Accuracy = T P + T N

T P + FN + FP + T N
(2)

H(p, q) = I
∑

x

px log qx (3)

4 Experiment Results

4.1 Dataset Description

This research used four datasets with different contents to conduct the experiments.
The use of four datasets was intended to confirm the feasibility of our proposed
encoding methods. The contents of these four datasets are described respectively,
below. Table 6 shows the combination of the content and the purpose of each dataset.

280 M.-Y. Chen et al.

4.2 Results of Experiments 1 and 2

This section shows the experimental results of the four models with different archi-
tectures after using Datasets 1 and 2 under the conditions of different batch sizes.
The data contents of Datasets 1 and 2 were the already encoded two-dimensional
matrix data. The experimental results are shown in Tables 7 and 8; the contents are
the average of the results after conducting 10-fold cross-validation experiments.

The accuracy of the results of Experiments 1 and 2were very close. Their accuracy
rates were approximately 90%, butModel 2was slightly lower at about 89%. The dif-
ference betweenModels 1 and 2was the size of the pooling layer. In the pooling layer
of Model 2, a 5× 5 convolution filter was used for sampling. The reason for the poor
result might be that the two-dimensional matrix used in this research was 16 × 16.
Compared with the pixel matrix of a photo, the matrix of this research is indeed
too small. Direct oversized sampling could have destroyed the structure of the small
matrix, resulting in feature losses that eventually affected the accuracy. Although

Table 6 Description of each dataset

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Purpose of
experiment

Confirm the
feasibility of the
encoding method
proposed in this
research

Expect to retain
its feature values
after the matrix is
flipped

Expect to enhance
model
performance via
increasing data
amount

Expect the encoding
method of this
research will not be
affected by the
arrangement order

Data
composition

The matrix data
of the encoding
method proposed
in this research

The result created
by horizontally
flipping Dataset 1

The summation of
Dataset 1 and
Dataset 2

The matrix created
by randomly
swapping the
sequence

Data amount 4,235 4,235 8,470 4,235

Table 7 Experimental results with 10-fold cross-validation in Experiment 1

Batch size Experimental result Model 1 Model 2 Model 3 Model 4

32 Accuracy 90.24% 89.35% 89.80% 89.80%

Loss 0.206 0.213 0.192 0.224

64 Accuracy 90.62% 89.49% 90.02% 90.01%

Loss 0.206 0.215 0.212 0.216

128 Accuracy 90.90% 89.17% 90.36% 90.34%

Loss 0.209 0.225 0.198 0.222

256 Accuracy 91.10% 89.41% 90.51% 90.57%

Loss 0.201 0.226 0.202 0.194

512 Accuracy 90.98% 89.17% 90.37% 90.65%

Loss 0.198 0.237 0.196 0.186

Using Convolutional Neural Networks … 281

Table 8 Experimental results with 10-fold cross-validation in Experiment 2

Batch size Experimental result Model 1 Model 2 Model 3 Model 4

32 Accuracy 90.51% 89.21% 90.08% 89.92%

Loss 0.225 0.227 0.233 0.228

64 Accuracy 90.72% 89.38% 89.94% 89.96%

Loss 0.239 0.214 0.217 0.232

128 Accuracy 90.78% 89.26% 90.20% 90.20%

Loss 0.213 0.246 0.229 0.228

256 Accuracy 91.02% 89.51% 90.40% 90.52%

Loss 0.208 0.227 0.232 0.208

512 Accuracy 91.22% 89.31% 90.52% 90.95%

Loss 0.205 0.233 0.229 0.214

the size of the convolution filter in Model 4 was the same as in Model 2, the sam-
pling method and the sequence were different in the convolutional layer; hence the
matrix structure was not likely to be destroyed, ensuring a more accurate prediction.
Model 3 was the deepest model. Normally, performance is better when there are
more convolutional and pooling layers. There are two reasons for the setbacks. The
first reason is insufficient data volume. Deep learning requires a large amount of
data in order to raise the performance level of the model. The approximately 4,000
entries in our dataset were insufficient in terms of data volume. The second reason
is insufficient matrix size. The convolutional neural network model was originally
applied to image sampling, and digital images can often measure more than 16 pixels
on a side. Taking the commonly used handwriting recognition MNIST dataset as an
example, the image size is 28 × 28 pixels, not to mention the much larger image
sizes used in other studies or in videos.

Increasing the batch size is likely to reduce the time required to train the model.
The loss value and accuracy would also be improved because the deviations could
be more easily identified in a larger batch size, and the loss value could hence be
lowered. As shown in the results, the batch size must be adjusted according to the
structure and data characteristics of the model.

4.3 Results of Experiment 3

This section shows the experimental results of the four models after using Dataset 3
under the conditions of different batch sizes. Dataset 3was the summation ofDatasets
1 and 2. The training data volume is also extremely important to deep learning. Hence
the datasets of Experiments 1 and 2 were summed up and trained in Experiment 3.
The experimental results are depicted in Table 9.

282 M.-Y. Chen et al.

Table 9 Experimental results with 10-fold cross-validation in Experiment 3

Batch size Experimental result Model 1 Model 2 Model 3 Model 4

32 Accuracy 72.80% 71.43% 72.32% 71.84%

Loss 0.451 0.461 0.477 0.478

64 Accuracy 72.97% 71.37% 72.25% 71.97%

Loss 0.464 0.468 0.456 0.473

128 Accuracy 73.11% 71.18% 72.13% 71.81%

Loss 0.459 0.464 0.471 0.471

256 Accuracy 73.03% 71.29% 72.24% 71.57%

Loss 0.457 0.463 0.459 0.485

512 Accuracy 73.19% 71.07% 72.01% 71.53%

Loss 0.455 0.475 0.472 0.479

The accuracy of Experiment 3 was about 70%; the loss value rose to 0.4 or even
0.5. Compared with Experiments 1 and 2, the accuracy and loss value were rather
different. Since Experiment 3 used twice the data volume for training, the results
were expected to be much better, and it took much more time to train.

After comparing the results of Experiment 3 with those of Experiments 1 and 2,
it was determined that the integrated dataset had failed to accurately predict the results
because of the different features of the datasets. In other words, when Dataset 1
was flipped as Dataset 2, the results was two datasets that were completely different
from each other. As shown in the result of Experiment 3, the flipped matrix could
not retain the characteristics of the original images. In object recognition, the target
for identification is usually symmetrical in terms of left and right; i.e., after flipping,
the relative positional relationships of the features can still be found. However, in
Experiment 3, such a relationship could not be found. This made accurate predictions
difficult in Experiment 3.

4.4 Results of Experiment 4

This section shows the experimental results of the four models after using Dataset
4 under the conditions of different batch sizes. The purpose of Experiment 4 was
to determine whether after randomly swapping the matrix with a precondition, the
dataset could retain certain characteristics in order for the models to extract the
feature values. The results of Experiment 4 are shown in Table 10.

The results of Experiment 4 were similar to those of Experiments 1 and 2.
Although the results were not as good as Experiments 1 and 2, the accuracy of
each model was about 86%, and the loss value was about 0.25. The results of Exper-
iment 4 were very close. The differences between models were nearly identical to
those of Experiments 1 and 2. The reasons were also the same.

Using Convolutional Neural Networks … 283

With respect to the significance of randomly swapping the two-dimensionalmatrix
in Experiment 4, it should be noted that no matter how the matrix contents were
randomly swapped, only the rows and columns of the two-dimensional matrix were
used as units to perform random swapping, rather than completely randomizing
the entire two-dimensional matrix. In other words, regardless of the arrangement
sequence of each player in the home and visiting teams, the players were compared
one by one eventually. Though not as good as in Experiment 1, the prediction results
in Experiment 4 were pretty good, and the prediction capability was rather stable.

4.5 Discussion

A total of four different datasets, four different convolutional neural network architec-
tures, and five different batch sizes were used to verify the feasibility of the encoding
methods proposed in this research. Only Experiment 3 failed to achieve better per-
formance. Experiments 1, 2, and 4 achieved a good level of performance. Among
the four experiments, Model 1 stood out most prominently. In Table 11 shows the
best results of Model 1 in Experiments 1 to 4.

We compared the foregoing with the artificial neural network, which was estab-
lished usingWeka version 3.8. The setup parameters are shown in Table 12. The arti-
ficial neural network used Dataset 1, for which the accuracy rate was about 91.64%.
On the other hand, the best accuracy in this research was approximately 91.78%.

The encoding method proposed in this research for the convolutional neural net-
work worked better than the artificial neural network. We found that, after encoding
the data, the regional feature extraction method of the convolutional neural net-
work could effectively extract features. Through the coding method proposed in
this research, the calculated values were used to compare and analyze the relative
capabilities of the home and visiting team players. These values were then encoded

Table 10 Experimental results with 10-fold cross-validation in Experiment 4

Batch size Experimental result Model 1 Model 2 Model 3 Model 4

32 Accuracy 86.07% 85.59% 85.65% 85.09%

Loss 0.235 0.280 0.256 0.259

64 Accuracy 86.43% 85.72% 85.93% 85.63%

Loss 0.239 0.285 0.261 0.249

128 Accuracy 86.61% 85.74% 85.77% 85.71%

Loss 0.247 0.284 0.260 0.244

256 Accuracy 86.81% 85.69% 85.84% 85.89%

Loss 0.240 0.282 0.266 0.259

512 Accuracy 87.12% 85.78% 86.12% 86.04%

Loss 0.238 0.279 0.258 0.254

284 M.-Y. Chen et al.

into two-dimensional matrices, which were used as input data in the convolutional
neural network for training and modeling. From the coding in the two-dimensional
matrices, the differences in strengths between players could also be observed.

5 Conclusions

This study used a total of four experiments to verify the feasibility of the proposed
encoding method. The final results were compared with those of the traditional arti-
ficial neural network. We found the accuracy of the convolutional neural network
to be slightly better than that of the artificial neural network. By taking advantage
of the regional feature extraction capability, the convolutional neural network was
able to achieve results that could be superior to that of the traditional artificial neu-
ral network. Moreover, the encoding method proposed in this research allowed the
strengths of the players to be perceived via the matrices. This eliminated the need to
analyze and compare the players separately in the original data.

This research has several limitations. First, in comparison with other kinds of ball
sports, basketball has more controllable factors. Besides, its statistics are available

Table 11 Best results of Model 1 in each experiment

Batch size Experimental
result

Experiment 1 Experiment 2 Experiment 3 Experiment 4

32 Accuracy 90.74% 90.86% 73.21% 86.65%

Loss 0.182 0.246 0.421 0.274

64 Accuracy 91.31% 91.12% 73.31% 86.71%

Loss 0.177 0.211 0.451 0.193

128 Accuracy 91.43% 91.57% 73.59% 87.01%

Loss 0.211 0.183 0.455 0.253

256 Accuracy 91.78% 91.62% 73.41% 87.44%

Loss 0.207 0.205 0.457 0.255

512 Accuracy 91.24% 91.67% 73.60% 87.48%

Loss 0.172 0.212 0.450 0.230

Table 12 The artificial
neural network parameter
settings and experimental
results

ANN CNN

Hidden layer 1 1

Iteration 200 200

Batch size 256 256

Learning rate 0.0015 0.0015

Accuracy 91.64% 91.78%

Using Convolutional Neural Networks … 285

to the public. Thus, this study selected basketball as the research topic. Second, the
Python suite and programming language we selected for our deep learning develop-
ment requires the Linux operating system in order to be fully supported. Third, the
size of the matrix encoded in this research was limited to 16 × 16 because the NBA
allows no more than 16 players to be registered at a time for a given game.

As mentioned in Sect. 3.2, the variables of the NBA data are under analysis in
this research. The method in this research encodes the characteristics of basketball
only. In the future, more sports events will be encoded for the modeling of the
convolutional neural network. Adjustments of the model architecture can also raise
the performance and increase the accuracy of the prediction results.

References

1. Google:Google Trend. https://trends.google.com.tw/trends/?geo=TW(2018).Accessed 4 June
2018

2. Zhao, W.X., Wu, H.H.: Japan’s first–full of actuarial science. Business Weekly 1500 (2016)
3. Fong, R.S.: Studies on predicting the outcome of professional baseball games with data min-

ing techniques: MLB as a case. Department of Information Management of Chinese Culture
University. Unpublished Thesis (2013)

4. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture
in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)

5. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a
mechanism of visual pattern recognition. In: Competition and Cooperation in Neural Nets,
pp. 267–285. Springer, Berlin (1982)

6. Indolia, S., Goswami, A.K.,Mishra, S.P., Asopa, P.: Conceptual understanding of convolutional
neural network-a deep learning approach. Procedia Comput. Sci. 132, 679–688 (2018)

7. Craig, C., Overbeek, R.W., Condon, M.V., Rinaldo, S.B.: A relationship between temperature
and aggression in NFL football penalties. J. Sport. Health. Sci. 5(2), 205–210 (2016)

8. Maszczyk, A., Gołaś, A., Pietraszewski, P., Roczniok, R., Zając, A., Stanula, A.: Application
of neural and regression models in sports results prediction. Procedia Soc. Behav. Sci. 117,
482–487 (2014)

9. Bačić, B.: Towards the next generation of exergames: flexible and personalised assessment-
based identification of tennis swings. In: 2018 International Joint Conference on Neural Net-
works (2018). https://doi.org/10.1109/ijcnn.2018.8489602

10. Bunker, R.P., Thabtah, F.: A machine learning framework for sport result prediction. Appl.
Comput. Inform. 15(1), 27–33 (2019)

11. Kipp, K., Giordanelli, M., Geiser, C.: Predicting net joint moments during a weightlifting
exercise with a neural network model. J. Biomech. 74, 225–229 (2018)

12. NBA Media Ventures: NBA official website. https://nba.udn.com/nba/index (2018). Accessed
4 June 2018

13. Manley, M.: Martin Manleys Basketball Heaven. Doubleday Books (1989)
14. Kline, D.M., Berardi, V.L.: Revisiting squared-error and cross-entropy functions for training

neural network classifiers. Neural Comput. Appl. 14(4), 310–318 (2005)

https://trends.google.com.tw/trends/?geo=TW
https://doi.org/10.1109/ijcnn.2018.8489602
https://nba.udn.com/nba/index

Heterogeneous Computing System
for Deep Learning

Mihaela Maliţa, George Vlǎduţ Popescu and Gheorghe M. Ştefan

Abstract Various forms of Deep Neural Network (DNN) architectures are used as
Deep Learning tools for neural inspired computational systems. The computational
power, the bandwidth and the energy requested by the current developments of the
domain are very high. The solutions offered by the current architectural environ-
ment are far from being efficient. We propose a hybrid computational system for
running efficiently the training and inference DNN algorithms. The system is more
energy efficient compared with the current solutions, and achieves a higher actual
performance per peak performance ratio. The accelerator part of our heterogeneous
system is a programmable many-core system with a Map-Scan/Reductive only the
cells where architecture. The chapter describes and evaluates the proposed accelera-
tor for the main computational intensive components of a DNN: the fully connected
layer, the convolution layer, the pooling layer, and the softmax layer.

Keywords Deep neural network · Parallel computing · Heterogeneous
computing · Accelerators

1 Introduction

The mono-core computation can no longer keep up with the increasing demand
of computational power requested by Deep Learning applications, making a multi-
and many-core approach inevitable. At the same time, two kind of computations are
segregated from the homogenous corp of the general purpose computing: the complex

M. Maliţa
Saint Anselm College, Manchester, NH, USA
e-mail: mmalita@anselm.edu

G. V. Popescu · G. M. Ştefan (B)
Politehnica University of Bucharest, Bucharest, Romania
e-mail: gheorghe.stefan@upb.ro

G. V. Popescu
e-mail: georgevlad.popescu@yahoo.com

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_10

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_10&domain=pdf
mailto:mmalita@anselm.edu
mailto:gheorghe.stefan@upb.ro
mailto:georgevlad.popescu@yahoo.com
https://doi.org/10.1007/978-3-030-31756-0_10

288 M. Maliţa et al.

computation and the intense computation. The complex computation is defined by
a code with the size, S, expressed as a number of lines, in the same magnitude
order with its execution time, T , expressed as a number of clock cycles. The intense
computation is characterized by S � T . To optimize the power consumption, the
execution time, and the area of chips, a solution based on a general purpose mono-
coremust be substitutedwith a heterogeneous system.Whenever possible, the normal
approach is to have for the complex computation a host engine, while for the intense
computation an accelerator. The host engine could be a mono-core or a multi-core
(multi means few) computational engine; however, the accelerator must be a many-
core (many means no matter how big n) computational engine.

Our proposal for the accelerator part of the heterogeneous system includes a
general purposeMap-Scan-Reduce Accelerator (MSRA) based on previous research
[2, 13, 17], implementations [16], and investigated applications [1, 12, 14].

The main fallacy regarding the parallel computational systems currently used
in Deep Learning applications is: the use of a gathering of consecrated processing
cores, or of a specialized many-core engine, or of a specialized systolic array of
circuits could be the solution for accelerating the DNN computation. Even if the
use of an Intel’s Many Integrated Core (MIC), or of an Nvidia’s Graphic Processing
Unit (GPU), or of a Google’s Tensor Processing Unit (TPU) circuit, is ready to hand,
the outcome will be inefficient because of various architectural incongruities. The
architectural suitability that we propose allows to reduce 2 − 3× the energy, and to
increase approximately ∼3× the actual performance/peak performance ratio.

In the following sections we describe the main computational requirements for
DNN, the state-of-the-art hardware involved in Machine Learning applications, our
proposed accelerator, and the implementation and evaluation of the main layers of a
DNN.

2 The Computational Components of a DNN Involved
in Deep Learning

The computational components of a DNN are presented in this section. Two corre-
lated issues challenge the implementation of the applications involving DNN: (1) the
data transfer between the computational engine and the main memory of the system
(unfortunately, the ghost of the von Neumann Bottleneck is still haunting us), and
(2) the specific computations associated with the different types of DNN. We begin
by addressing the second issue. The first issue will be discussed when the specific
library of functions are defined and used in subsequent Sects. 4.5 and 5.1.

Deep learning, as a branch of Machine Learning, uses various types of DNN. The
most notorious are: Multi-Layer Perceptron (MLP), Convolutional Neural Network
(CNN), RecurrentNeuralNetwork (RNN), LongShort TermMemory (LSTM),Deep
Belief Network (DBN). The main computational layers to be accelerated in all the
previous types of DNN are: the fully connected neural network layer, convolution

Heterogeneous Computing System for Deep Learning 289

layer, pooling layer and softmax layer. Simple vector operations must be also con-
sidered in order to articulate properly the layers just listed in order to obtain the more
complex layers such as for RNN or LSTM.

2.1 Fully Connected Layers

A fully connected layer of n neurons receives anm-component input vector and sends
out another n-component vector. The input vector, x = [x1 x2 . . . xm], is multiplied
with a m × n matrix of weights and the result is submitted to a non-linear activation
function.

Formally, the transfer function of a neuron is:

o = f (
m∑

i=1

wi xi) = f (net) (1)

where f , the activation function, has various forms. For example:

• the sigmoid function of form:

f (y) = 2

1 + exp(−λy)
− 1 (2)

where the parameter λ determines the steepness of the continuous function f ; for
a big value of λ the function f becomes: f (y) = sgn(y)

• ReLU (rectified linear unit) of form:

f (y) = max(0, y) (3)

The neuron works as a combinational circuit performing the scalar product of the
input vector x with the weight vector w = [w1 w2 . . . wm] followed by the applica-
tion of the activation function. The activation function f , when it supposes a complex
computation, is simply implemented using a look-up table (LUT).

A fully connected feed-forward NN is now a collection of n m-input neurons.
Each neuron receives the same input vector x and is characterized by its own weight
vector wi . The entire NN provides the output vector:

o = [o1 o2 . . . on] (4)

The activation function is the same for each neuron. Thus, each NN is characterized
by the weight matrix:

290 M. Maliţa et al.

W =

⎡

⎢⎢⎢⎣

w11 w12 . . . w1n

w21 w22 . . . w2n
...

... . . .
...

wm1 wm2 . . . wmn

⎤

⎥⎥⎥⎦ (5)

with each neuron having its own column of weights. The computation consists of a
matrix-vector multiplication followed by the application of the activation function
on each component of the resulting vector.

2.2 Convolution Layer

Rather than using neurons to look at the entire input at a time, a convolution layer
“scans” the input, crossing over the entire input with a small, k × k, receptive field.

Let us consider the two-dimension input plan represented in the following matrix:

I =

⎡

⎢⎢⎢⎣

x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
. . .

...

xp1 xp2 . . . xpp

⎤

⎥⎥⎥⎦ (6)

where xi j are scalars (to make the story short and simple we considered a square
matrix). For example, I represents the 8-bit pixels of one of the RGB plans associated
with a color image. The image will be scanned looking each time to a k × k receptive
field of the following form:

Ri j =

⎡

⎢⎢⎢⎣

xi j xi(j+1) . . . xi(j+k−1)

x(i+1) j x(i+1)(j+1) . . . x(i+1)(j+k−1)
...

...
. . .

...

x(i+k−1) j x(i+k−1)(j+1) . . . x(i+k−1)(j+k−1)

⎤

⎥⎥⎥⎦ (7)

Starting from the top left corner of the input plane, the first receptive field is R11.
Additional receptive fields are considered with a stride s horizontally and vertically:

i = 1, (1 + s), (1 + 2s), . . . , (1 + ((p − k)/s)s) = 1, (1 + s), (1 + 2s), . . . , (1 + p − k)

j = 1, (1 + s), (1 + 2s), . . . , (1 + p − k)

where the stride could take values s = 1, . . . , k (the stride cannot be bigger than k
because the entire image must be scanned). If needed, the matrix I will be padded
with zeroes to have (p − k)/s = integer .

Heterogeneous Computing System for Deep Learning 291

Input Planp

p

k
k

1
2

3

d

p−k
s +1

p−k
s +1

Receptive field

ci j

Feature map 1
Feature map 2

Feature map 3

Feature map d

Fig. 1 Convolution

The neuron is the same during the scan of the entire input plan. This is called a
filter and is defined as a matrix having the same size with the receptive field. For
each input plane d filters are defined:

Fy =

⎡

⎢⎢⎢⎣

f y11 f y12 . . . f y1k
f y21 f y22 . . . f y2k
...

...
. . .

...

f yk1 f yk2 . . . f ykk

⎤

⎥⎥⎥⎦ (8)

for y = 1, 2, . . . , d. Each filter investigates the input plane “looking” for a specific
feature, thus generating a Feature map (see Fig. 1). The filter Fy applied to the
receptive field Ri j provides c

y
i j where:

cyi j =
k∑

m=1

k∑

l=1

f ylm × x(i+l−1)(j+m−1) (9)

Thus, the application of the filter Fy with stride s provides the matrix:

292 M. Maliţa et al.

Cy =

⎡

⎢⎢⎢⎣

cy11 cy12 . . . cy1(((p−k)/s)+1)

cy21 cy22 . . . cy2(((p−k)/s)+1)
...

...
. . .

...

cy(((p−k)/s)+1)1 c
y
(((p−k)/s)+1)2 . . . cy(((p−k)/s)+1)(((p−k)/s)+1)

⎤

⎥⎥⎥⎦ (10)

A convolutional layer consists of the application of d filters on the input plan
generating a three dimensional array of (((p − k)/s) + 1) × (((p − k)/s) + 1) × d
scalars (see Fig. 1). For each filter a feature plan is generated with a scalar for every
receptive field.

2.3 Pooling Layer

The pooling layer is used to reduce the size of a feature plan substituting (usually)
a square pooling window of q × q scalars with only one scalar, which characterizes
the entire pooling window. The scalar could be the maximum value from the pooling
window, the sum of the values from the pooling window, or another value that is able
to synthesize the content of the poolingwindow. The poolingwindows are considered
(usually) with a stride q in both directions in order to cover the entire feature plan.
A stride smaller than q is possible, but it is not frequently considered.

Starting from a feature plan provided by a convolution, the pooling operation
provides the pooled plan. Let us consider defining the pooling function with the
same input I of p × p scalars. If the pooling window is q × q and the stride q (the
usual case) the resulting plan is a p/q × p/q matrix of scalars Pq .

Pq =

⎡

⎢⎢⎢⎣

y11 y12 . . . y1(p/q)

y21 y22 . . . y2(p/q)

...
...

. . .
...

y(p/q)1 y(p/q)2 . . . y(p/q)(p/q)

⎤

⎥⎥⎥⎦ (11)

where yi j is computed usually in two ways (see Fig. 3) for q × q matrices:

• by adding all the q × q values
• by taking the maximum value from the q × q values

Pooling window of q × q scalars in thematrix I results in a scalar in the Pq matrix
(see Fig. 2)

In current applications, the value of q is 2 or 4. In Fig. 3 two examples for q = 2
are presented. One with Max as pooling function, and another with Add as pooling
function. Each 2 × 2 matrix of scalars is substituted with their maximum or their
sum.

Heterogeneous Computing System for Deep Learning 293

Input plane

Pooled plane

q
q

p

p

p/q

p/q

Fig. 2 The pooling operation: starting from a p × p matrix, results in a p/q × p/q matrix

3

3

3
2

22
5

5

1

1
1

7
4

4

4
8

Max Pool Add Pool

5 7
5 8

13 16
11 15

I

P2 P2

Fig. 3 Examples of pooling for 2 × 2 pooling windows and stride 2. TheMax Pool operation takes
from the window the maximum value, while the Add Pool operation sums all the values from the
window

2.4 Softmax Layer

The softmax layer is used for multi-category classification, in order to emphasis
the most probable candidate as result. It is applied to a n-component vector V =
〈x1, x2, . . . , xn〉. Its value is determined by the standard exponential function on
each component, divided by the sum of the exponential function applied to each
component, as a normalizing constant. Therefore, the output components sum to 1:

294 M. Maliţa et al.

σi (V) = exi∑n
i=1 e

xi
(12)

Results:
Si (V) = 〈σ1(V), σ2(V), . . . , σn(V)〉 (13)

In [18] the computation is simplified by avoiding the divide operation and by
reducing the domain of the exponent. The first step is to down-scale the exponenti-
ation:

σi (V) = exi /exmax

(
∑n

i=1 e
xi)/exmax

= exi−xmax

∑n
i=1 e

xi−xmax
(14)

The second step is to compute the natural logarithm:

ln(σi (V)) = (xi − xmax) − ln(

n∑

i=1

exi−xmax) (15)

While the sum in Expression (12) is susceptible to overflow because the values
generated by exponentiation are high, and the divide operation is resource and time
consuming, the Expression (14) works with smaller numbers and avoids the division.
Both, ln and exp operations are performed using LUTs.

2.5 Putting All Together

An example of DNN is shown in Fig. 4, where all the previously presented functions
are used to define a particular network. The input is a color image represented by the
three color plans RGB. A first convolutional level with ReLU as activation function
is followed by a pooling layer which is used to downsize the feature plans.We follow
similar stages (convolution with ReLU and pooling) until the last pooled volume is
flattened to a vector applied to a fully connected NN. The last stage is a softmax
layer which provides the probabilities associated with possible input images.

While the first few convolutions are used to inspect the input to identify specific
local features, the last fully connected layers provide a global analysis, and the
softmax output layer emphasizes the most probable result.

3 The State of the Art

The main drawbacks of the current hardware solutions are: (1) the programmable
(CPU,MIC, GPU, DSP) solutions are implemented on inappropriate parallel engines
unable to use efficiently their high computational power in the specific computation
requested by DNN, (2) the specific circuit solutions do not have enough flexibility in

Heterogeneous Computing System for Deep Learning 295

Fig. 4 An example of DNN [19]

Fig. 5 Xeon Phi Micro-architecture with 2 levels of cache and ring architecture [21]

order to be efficiently adapted to the various forms of DNN, and (3) the FPGA-based
reconfigurable solutions are too expensive, consume too much energy and require
hardware specific knowledge. In the following subsections we will review the main
solutions based on “of-the-shelf” computational devices.

3.1 Intel’s MIC

Central Processing Units were not initially designed for machine learning, but in
the last few years manufacturers began includingmultiple processing units that allow
parallel execution of different tasks, making them a good candidate for deep learning.
Intel Xeon Phi is the first product based on Intel’s MIC Architecture (see Fig. 5).

296 M. Maliţa et al.

Intel Xeon Platinum 8180 is a multi-core processor that offers a peak performance
of 3259 GFLOPS for LINPACK [10] and 3.8 TFLOPS for SGEMM (Single preci-
sion floating General Matrix Multiply) using AVX512 [5]. The 28-core processor is
fabricated using 14nm technology and the TDP is 205Watt, meaning a performance
of 18.53 GFLOPS/W. This processor was evaluated in [5] for ResNet-50 topology
and the obtained forward and backward propagation performance for the majority
of the layers is 70–80% of the machine peak. Nevertheless, there are layers where
the performance is about 55% of the peak, because of the high bandwidth require-
ments for the process of writing the output tensors. An important observation is that
the previous performance results were obtained for an optimized implementation
called direct convolutional kernels. For other convolution implementation, such as
im2col, libxsmm or autovec, the performance is much lower: 3 times smaller
for im2col, 9 times smaller for libxsmm and 16 times smaller for autovec.

Intel Xeon Phi 7295 is a processor specialized for deep learning, with 72 cores and
a peak performance of 11.5 TFLOPS for SGEMM using FMA4 instruction set. The
processor is fabricated using 14nm technology and the TDP is 320 Watt, meaning
the FLOP/Watt performance is 35.9 GFLOPS/W.

This type of processor was also evaluated in [5] and the performance varied
according to the filter dimensions. For example, layers with 1 × 1 filters achieve
∼50% of their peak performance and layers with 3 × 3 filters achieve 70% of their
peak. For other convolutional layer implementations, the performance is even smaller
than the one obtained for Xeon Platinum 8180: a∼20% of peak average for im2col
and just a few percent of peak for most of the layers, when using libxsmm or
autovec.

Intel Xeon E5-2699 v3 (Haswell) CPU with 18 cores and a peak performance
of 1.3 TFLOPS for a TDP of 145 Watt (8.96 GFLOPS/W, 22nm technology) was
evaluated in [8] for six DNN applications: two MLP networks, containing fully
connected layers, two LSTMnetworks, containing fully connected and element-wise
operation layers) and twoCNNnetworks, containing convolutional, pooling and fully
connected layers. The performance evaluation reveals that the CNN networks use
23 and 46% of processor peak computation capabilities, the MLP networks use 15.4
and 38.5% of processor peak computation capabilities and LSTM networks use 84.6
and 46% of processor peak computation capabilities.

3.2 Nvidia’s GPU as GPGPU

GPUs are processors created for computer graphics (see Fig. 6), which, due to their
high number of cores and high parallelism, are very effective in running matrix
multiplications, the main operation involved in deep learning.

The most famous GPUmanufacturer is NVIDIA. Besides the usual GPUs, during
the last years they have begun to make their products more efficient in artificial
intelligence tasks.

Heterogeneous Computing System for Deep Learning 297

Fig. 6 NVIDIA Titan V [15]

298 M. Maliţa et al.

Although the GPUs have large computational capabilities, the real performance
obtained in deep learning applications may be far from their peak performance. The
factors that can influence the efficient use of computational and power resources
are either related to processor architecture or software that is not optimal for the
architecture it targets. This gap between theoretical and real performance for GPUs
has been highlighted in several papers.

NVIDIA GTX Titan Black is a GPU with 2880 CUDA cores and 5645 GFLOPS
single precision floating point (FP32) peak performance. The GPU was fabricated
in 28nm technology and the TDP is 250W, which means a FLOP/Watt performance
of 22.56 GFLOPS/W. The use of computational performance on CNN experiments
are positioned in the range of 9–50% from peak [11].

NVIDIA Tesla K40 is a GPU with 2880 CUDA cores and 4.29 TFLOPS single
precision peak performance (28nm technology, TDP = 235 W, 18.25GFLOPS/W).
Different convolutional layers were tested and the obtained performance ranges from
23 to 35% of peak [3].

NVIDIA Geforce GTX 980 is a GPU with 2048 CUDA cores and a peak sin-
gle precision performance of 4.95 TFLOPS (28nm technology, TDP = 165 W,
30 GFLOPS/W). Different convolutional layers were tested and the obtained per-
formance ranges from 30 to 51% for NVIDIA Geforce GTX 980 [3].

NVIDIA Tesla K80 is a card containing two GPUs, each one with 2496 CUDA
cores and a peak single precision floating point performance of 2.8 TFLOPS (28nm
technology, TDP = 150 W, 18.66GFLOPS/W). The evaluation for two MLP net-
works, two LSTM networks and two CNN networks reveals that the CNN networks
use 32.1 and 35.7% of peak performance, the MLP networks use 7.14 and 25% of
peak performance and LSTM networks use 17.85 and 25% of peak performance [8].

Although many applications require high precision computation (32-bit floating
point FP32, or 64-bit floating point FP64), researchers have discovered that a half
precision floating point (FP16) is sufficient for deep learning training. Additionally,
deep learning inference can be performed using 8-bit integer computation, without
significant impact on accuracy [6]. In order to make GPUs more efficient in perform-
ing different tasks, multiple precision modes are supported.

Starting with the Volta generation, a specialized Tensor Core unit was added,
speeding up the matrix multiplications. Volta Tensor Cores combines FP16 (half
floating point precision) multiplications with FP32 accumulations. The newer Turing
Tensor Cores are enhanced for inferencing, adding new INT8 and INT4 precision
modes. In order to evaluate the performance of GPUs using those specialized cores,
a new performance metric was defined: Tensor Tera Operations Per Second, TTOPS.

Example ofGPUs optimized for deep leaning areNVIDIATitanV (see Fig. 6) and
NVIDIA Tesla V100. Titan V contains 5120 CUDACores and 640 Tensor Cores and
offers a performance of 13.8 TFLOPS for single precision floating-point (FP32), 27.6
TFLOPS for half precision floating-point (FP16) and 110 TTOPS for deep learning.
Tesla V100 (PCIe) contains 5120 CUDA Cores and 640 Tensor Cores and offers a

Heterogeneous Computing System for Deep Learning 299

Fig. 7 Block diagram of Tensor Processing Unit (TPU) [8]

performance of 14 TFLOPS for single precision floating-point (FP32), 28 TFLOPS
for half precision floating-point (FP16) and 112 TTOPS for deep learning.

3.3 Google’s TPUs

TPU is an Application-Specific Integrated Circuit (ASIC) for neural networks infer-
ence, used as accelerator in a hybrid system, the communication between TPU and
host being assured by a PCIe bus.

The core of the chip (see Fig. 7) is a systolic array of 256 × 256 8-bit multipliers,
calledMatrixMultiply Unit (MXU), which performsmatrix multiplications between
input data and weights. The MXU input data is stored in the Unified Buffer, which
helds the results of previous computation steps. The data transfer between Unified
Buffer and the host memory is controlled by a DMA controller. The MXU input
weights are delivered by the Weights FIFO.

The resulting products are accumulated in the Accumulators and the nonlinear
activation functions are computed by the Activation Unit.

Running at a frequency of 700MHz and computing 256 × 256multiply-and-adds
for 8-bit integers every clock cycles, the peak performance of TPU is 92 TTOPS.
The chip was fabricated in 28nm technology and the TDP is 75 W, meaning that the
TTOPS/Watt performance is 1.22 TTOPS/W.

300 M. Maliţa et al.

TPU was evaluated in [8] for the same six DNN applications described above.
The MLP networks use 13.3 and 10.5% of its peak computing capabilities, LSTM
networks use 4 and 3%of its peak computing capabilities andCNNnetworks use 93.4
and 15.3% of its peak computing capabilities, the mean performance being 23.24%
of its peak. The performance forMLPs and LSTMs is limited bymemory bandwidth,
while the small performance of one of the CNNs networks can be explained by its
structure (the presence of fully connected layers and the shallow feature depth of
some layers).

Google also developed TPU v2 and TPU v3. If the initial TPU was limited to
8-bit integer operations, the new generations can also calculate in floating point (the
MXU units perform multiplies at reduce bfloat16 precision [20]), allowing it to
be used also for neural networks training.

The second generation of TPU has two 128 × 128 MXUs, each one connected to
an 8 GB High Bandwidth Memory, increasing the bandwidth to 600 GB/s. The peak
performance for each TPU v2 chip is 45 TTOPS [9].

The third generation of TPU has two cores, each one with two 128 × 128 MXU
units, peak performance being twice as the previous generation one.

3.4 Concluding About the State of the Art

Putting together all the information from the previous analysis (see Table1), we
can learn some very important things about the way to define the structure and the
architecture of an accelerator.

The general purpose architectures implemented by MICs provide a pretty good
actual performance from the peak performance (an average of�45%) but the compu-
tation perWatt is relatively low (an average of�21GFLOP/W). The reduced number
of cores (less than 100) requests a simple control, allowing, in some applications for
optimized code, the use of>80% from the peak performance. But, most of the appli-
cations, evaluated for general purpose multi-cores, are unable to use more than 25%
from their peak performance, and some of them use only few percentage of their very
high performance. The architecture of the general purpose computers are designed
for a wide specter of applications, while for intense applications there are specific
requirements. The general purpose processors waste too much resources for 32-bit
floating point computations, while usually the CNN computation asks small integer
arithmetic for inferences and accepts 16-bit float operations for training.

General purpose graphic processing unit (GPGPU) is an oxymoron. It is tempting
to take “of-the-shelf” a many-core parallel processor to solve intense computations,
but, in the same time, is dangerous to use a powerful processor far from its application
domain. A graphic machine can not be converted in a machine learning accelerator
without a high risk. The actual performance related to the peak performance is lower
compared with general purpose multi-core architectures (average �34%) due to the
difficulties involved in control and data transfer for hundred or thousands of execution

Heterogeneous Computing System for Deep Learning 301

Table 1 Overview for analyzed devices performance

Chip model Fab. techn. (nm) Peak performance Performance per
Watt

Actual % from
peak

Intel Xeon
Platinum 8180

14 3.8 TFLOPS 18.53
GFLOPS/W

5–80

Intel Xeon
E5-2699 v3

22 1.3 TFLOPS 8.96 GFLOPS/W 15–84

Intel Xeon Phi
7295

14 11.5 TFLOPS 35.9 GFLOPS/W 20–70

NVIDIA GTX
Titan Black

28 5.64 TFLOPS 22.56
GFLOPS/W

9–50

NVIDIA Tesla
K40

28 4.29 TFLOPS 18.25
GFLOPS/W

23–35

NVIDIA Geforce
GTX 980

28 4.95 TFLOPS 30 GFLOPS/W 30–51

NVIDIA Tesla
K80

28 2.8 TFLOPS 18.66
GFLOPS/W

7–35

Tensor
Processing Unit

28 92 TTOPS 1.22 TTOPS/W 3–93

units. The energy use is only a little improved (an average of�22.36GFLOP/W). The
GPUs optimized for deep learning are designed with distinct physical resources for
integer, 32-float, 64-float, and tensor operations (see Fig. 6). Thus the area efficiency
is lowered because too many times big parts of the area of the chip is unused.
The cache approach persists with its inefficiency in helping the intense computation
which is highly predictable requesting only a buffer-centered approach in thememory
hierarchy design.

Specific ASIC’s, such as TPU, do not have enough flexibility to support the high
variety of DNNs. Therefore, only for a small part of the applications their huge com-
putational power can be activated. For most of the applications (90%, according to
[7]) no more than 13.4% from the peak performance is used. Only for one applica-
tion, deployed in less than 5% of the applications, 93% from the peak performance is
activated. The very big number of arithmetic systolic units (multipliers and adders)
can not be easy put to work efficiently for the high variety of DNN we are facing in
real applications.

The cache-based memory hierarchy is inappropriate for intense computation
because of the high predictability of the program and data flow.

Architectural inadequacy is the main issue A general purpose architecture or a
graphic architecture or a simple systolic circuit are hard to be adapted to the specific
requirements of the intense computational domain of machine learning. And when
the energy saving criteria is added, the problem becomes much harder.

302 M. Maliţa et al.

Fig. 8 Heterogeneous
system

ACCELERATORHOST

INTERCONNECTION FABRIC

MEMORYI/O

4 Map-Scan/Reduce Accelerator

4.1 The Heterogeneous System

The computation becomes “hybrid” or heterogeneous when we start to segregate the
execution of a program in two tightly interleaved parts:

• intense computations, characterized by short code and big execution time; these
parts are sent to an accelerator

• complex computations, when the size of code and the execution time are in the
same magnitude order; these parts run on the host.

Thus, the pair HOST & ACCELERATOR represents the structure of a HETERO-
GENEOUS COMPUTER. A possible embodiment is presented in Fig. 8, where:

• HOST is a general purpose processor which runs the application using a library of
functions written using a kernel library running on ACCELERATOR (for example
the Eigen library or the TensorFlow library implemented using EigenKernel or
TensorFlowKernel libraries)

• ACCELERATOR is our MSRA running EigenKernel or TensorFlowKernel
libraries, i.e., Eigen or TensorFlow libraries limited to data structures managed
efficiently in a n-cell accelerator

• INTERCONNECTION FABRIC is a multiple point interconnection network used
for fast data transfer between the components of the system

• MEMORY stores the programs and the data to be processed
• I/O system to connect the heterogeneous computer to the external world.

The host processor is programmed in a high level language (C, C++, Python,...)
while the accelerator’s kernel library is developed, in this early stage of the project,
in assembly language in order to achieve the highest possible performance. From
the kernel library to the targeted library the implementation is done in a high level
language.

Heterogeneous Computing System for Deep Learning 303

.
.

.
.

cell1 cell2 cell3 celln

DISTRIBUTE

SCAN

REDUCE

CONTROLLER

to MEMORY, HOST, I/O

MAP

Fig. 9 Map-Scan/Reduce Accelerator (MSRA): the linear array of cells MAP with two global
loops (one through REDUCE and another through SCAN) running code issued in each clock cycle
by the CONTROLLER unit

4.2 The Accelerator’s Structure

The structure of MSRA is presented in the current subsection. It is a general pur-
pose programmable parallel accelerator optimized for the functional requirements
described in Sect. 2. The accelerator is designed as part of a heterogeneous computing
system in which the complex part of the program runs on the host computer, while
the intense part of the application (convolution, pooling, fully connected NN) runs
on the accelerator. The architecture and the structure of the heterogeneous system
are described with emphasis on advantages provided for the investigated application
domain.

MSRA is a n-cell engine (see MAP section in Fig. 9) with two global loops:

• one, closed directly through a log-depth scan circuit, SCAN, which receives a
n-component vector from the array of cells and sends back a n-component vector

• another, closed through a log-depth reduction circuit, REDUCE, which receives a
n-component vector from the array of cells and sends its output to CONTROLLER
which issues in each cycle, through the log-depth network DISTRIBUTE, an
instruction to be executed in each active cell.

The architectural image of MSRA for the user is:

• the constant vector index, distributed along the cells: I X = [1, . . . , n] used to
identify the cells as cell1, cell2, . . . , celln

• the distributed memory:

304 M. Maliţa et al.

DM =

⎡

⎢⎢⎢⎣

s11 s12 . . . s1n
s21 s22 . . . s2n
...

...
. . .

...

sm1 sm2 . . . smn

⎤

⎥⎥⎥⎦ (16)

which can be seen as composed by

– full horizontal vectors, distributed along the cells, for i = 1, . . . ,m:

Hi = [
si1 si2 . . . sin

]
(17)

whose components can be processed in parallel in the MAP section of the
accelerator

– full vertical vectors, for j = 1, . . . n, each stored in the corresponding cell:

Vj =

⎡

⎢⎢⎢⎣

s1 j
s2 j
...

smj

⎤

⎥⎥⎥⎦ (18)

whose components are stored in the m-location register file in each cell

• the Boolean vector distributed along the cells: B = [b1, . . . , bn] used to activate
the cells when bi = 1

• the accumulator vector ACC = [acc1 acc2 . . . accn] distributed along the cells
• CONTROLLER’s data memory: M = [s1 s2 . . . su]
• the accumulator of CONTROLLER: acc

In the program memory of CONTROLLER, HOST loads programs whose binary
form are stored as a pair of instructions, one for CONTROLLER and another to be
executed in each active cell of the MAP array. Thus, in each clock cycle, from its
program memory, CONTROLLER fetches an instruction for itself and another to be
issued toward the MAP array. With a latency in O(log n), CONTROLLER receives
the result provided by the REDUCE network.

4.3 The Micro-architecture

There are the following types of operations performed by MSRA:

• data transfer operations
• spatial control operations targeting the content of the vector B whose components
are used to perform predicated executions

• unary and binary predicated vector operations on horizontal vectors

Heterogeneous Computing System for Deep Learning 305

• reduction operations on the components of the horizontal vectors provided by the
active cells

• scan operations on the components of the horizontal vectors provided by the active
cells.

4.3.1 Data Transfer Operations

The content of the distributed memory DM (Eq.16) can be partially or totally loaded
from or stored to MEMORY (see Fig. 8). The transfer is done one vector at a time
using two functions:

• load(s, i, j): s left most positions of the horizontal vector Hi are loaded
with scalars from MEMORY starting at the address j

• store(s, i, j): s left most scalars of the horizontal vector Hi are stored in
MEMORY starting at the address j

Important note: the transfer between DM and MEMORY is transparent to the
computation performed in our accelerator, i.e., during the transfer the computation
runs in parallel undisturbed. This important feature of our architecture contributes to
avoiding, at leas partially, the “bottleneck” between the MAP array and MEMORY.
Smartly used, it feeds up the data hungry MAP array with data from MEMORY.

4.3.2 Spatial Control Operations

The spatial control allows the predicated execution by working on the value of the
Boolean vector B. Each of the following operations is performed in one clock cycle:

• activate:
B ⇐ [1, 1, ..., 1]

activates all the cells of the accelerator
• where(cond):

bi = ((bi == 1) & condi) ? 1 : 0

in all active cells, keeps active only the cells where the condition condi is fulfilled,
where condi stands for the value the condition cond takes in celli

• elsewhere: in all the cells active before the action of the last recent still last-
ing where(...), keeps active only the cells where the condition condi is not
fulfilled, i.e., performs the complementary where selection in the active space

• endwhere: restores the vector B to the state before the last recent still lasting
where(...)

Embedded where(...) are allowed.

Example 4.1 Let be, for n = 16 the boolean vector uninitiated and the accumulator
vector loaded with the index vector IX:

306 M. Maliţa et al.

B = [-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-]

ACC = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

The evolution of the Boolean vector B under a sequence of spatial control operations
is the following:

(1) activate ; => B = [1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1]
(2) where(acc > 3); => B = [0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1]
(3) where(acc < 14); => B = [0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,0 ,0 ,0]
(4) elsewhere ; => B = [0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,1 ,1 ,1]
(5) endwhere; => B = [0 ,0 ,0 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1]
(6) endwhere; => B = [1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,1]

In step (1) all the cells are activated: bi = 1, for i = 1, 2, . . . , 16. Then, remain
active only the cells where acci > 3. In the next step, the embedded where
operation is exemplified: from the active cells remain active only the cells where
acci < 14. The elsewhere operation is performed in the active space selected
by WHERE(ACC > 3). Step (4) activates the cells inactivated by the previous
where(...). Step (5) restores the vector B to the state before the last recent
where(...) where action still last: WHERE(ACC < 14). In step (6), vector B is
restored to its initial value stated by the operation ACTIVATE. �

4.3.3 Arithmetic and Logic Operations

Each vector operation is performed on n-component horizontal vectors in constant
time.

Unary Operations. Some operations are performed only in the active cells where the
value of the Boolean vector B is bi = 1, other are performed in all cells, independent
of the content of B. For example:

• inc(i, k):
si j ⇐ b j ? (sk j + 1) : si j

for j = 1, . . . , n; in each active cells, the component of the horizontal vector Hi

takes the incremented component of the horizontal vector Hk

• shiftRight(i, k, input):

si j ⇐ (j == 0) ? input : sk(j−1)

for j = 1, . . . , n; all the components of the horizontal vector Hk are shifted one
position right with input inserted in the left end position, and are stored as Hi

Heterogeneous Computing System for Deep Learning 307

Binary Operations. The binary operations are performed in constant time (usually
one clock cycle) only in the active cells where the value of the Boolean vector B is
1. For example:

• mult(k, l, m):
sk j ⇐ b j ? (sl j ∗ smj) : sk j

for j = 1, . . . , n; in each active cells, the component of the horizontal vector
Hi takes the value of the product between the corresponding components of the
horizontal vectors Hl and Hm

• xor(k, l, m):
sk j ⇐ b j ? (sl j ⊕ smj) : sk j

for j = 1, . . . , n; in each active cells, the component of the horizontal vector Hi

takes the value of the bitwise XOR between the corresponding components of the
horizontal vectors Hl and Hm

4.3.4 Reduction Operations

The reduction operations are performed on the values provided by the active cells.
They are:

• redadd(i):

acc ⇐
n∑

k=1

(bk ? sik : 0)

the CONTROLLER’s accumulator takes the sum of the accumulators of the active
cells with a latency L ∈ O(log n)

• redmax(i):
acc ⇐ Maxnk=1(bk ? sik : 0)

the CONTROLLER’s accumulator receives, with a latency L ∈ O(log n), the
maximum value stored in the accumulators of the active cells

• redmin(i):
acc ⇐ Minnk=1(bk ? sik : ∞)

the CONTROLLER’s accumulator receives, with a latency L ∈ O(log n), the
minimum value stored in the accumulators of the active cells; the symbol ∞
stands for the biggest number in the representation used in the application.

• redbool:
acc ⇐ ORn

k=1bk

the CONTROLLER’s accumulator receives, with a latency L ∈ O(log n), the
logic OR from all the bits of the Boolean vector B (used to test if at least one cell
is active or not).

308 M. Maliţa et al.

4.3.5 Scan Operations

The scan operations take a vector, HVk , from LM and return a vector, HVi , whose
components are computed according to the global content of HVk . For example:

• prefixadd(i, k): HVi ⇐ [(b1?sk1 : 0), (
2∑
j=1

(b j?sk j : 0)), . . . , (
n∑
j=1

(b j?sk j :
0))]

• compact(i, k): HVi ⇐ [sk1, sk3, . . . , sk(n−3), sk(n−1), 0, 0, . . . , 0︸ ︷︷ ︸
n/2

] aligns to

the left the odd components of the vector.

4.4 Hardware Parameters of MSRA

The hardware performances are evaluated using simulation tools for the 28nm tech-
nology. The simulation of a MSRA running at 1GHz was used to evaluate the size
and the power for a version having a 32-bit DDR interface, the 32-bit word size,
the number of cells n = 2048, and the memory size m = 1024 (4KB SRAM/cell).
The resulting area of the chip is 9.2 × 9.2 mm2 = 84.64 mm2. The power consumed
by the chip is shown in Fig. 10. Depending on temperature results: 12/14/18 W at
80/100/120 ◦C. The computational performances are:

• for integer arithmetic:

– 2048 GOPS, where GOPS stands for Giga 32-bit Operations Per Second; at
80 ◦C results 170.66 GOPS/W

– 4096 GOPS, for 16-bit operations; at 80 ◦C results 341.33 GOPS/W

• for applications involving floating point arithmetic with 20% float operations plus
80% integer operations:

– 820 GOPS for float and integer operations defined on 32 bits; at 80 ◦C results
68.33 GOPS/W

– 2400 GOPS for float and integer operations defined on 16 bits; at 80 ◦C results
200.33 GOPS/W

because the float operations are performed in a sequence of operations in execu-
tion units with no floating point units implemented as distinct structures, like in
NVIDIA Titan V (see Fig. 6)

• for machine learning operations: 8 TTOPS, where TTOPS stands for Tensor TOPS
(see Sect. 3.2); at 80 ◦C results 1.36 TTOPS/W, if the architecture is designed for
tensor operations used in Machine Learning applications.1

1Tensor TOPS are evaluated (as for TPU) considering the REDUCE section performing adds in
parallel with the MAP section which performs multiplications.

Heterogeneous Computing System for Deep Learning 309

Fig. 10 Power consumption
evaluated for out MSA [14]

To note that for trainingDNN the proposed architecture provides 200.33GOPS/W,
while for inference 341.33 GOPS/W or 0.68 TTOPS/W (around half of the circuit
performance).

4.5 NeuralKernel library

For our application, a small library, let us call it Neural, can be implemented using
the NeuralKernel library defined starting with the following functions:

instmx(M, l, c): instantiate in ACCELERATOR’s MAP array the matrix M
with l lines and c columns, where the lines are parts of the full horizontal vectors
(see Eq.17), and columns are parts of the full vertical vectors (Eq. 18)

instvt(V, l): instantiate in the data memory of ACCELERATOR’s CON-
TROLLER the vector V of length l

loadmx(M, p): load the content of the matrix M from MEMORY starting from
the address p where the matrix is stored line by line, and increment the pointer p
to (p + l × c)

310 M. Maliţa et al.

storemx(M, p): store the content of the matrix M to MEMORY starting from the
address p where the matrix is stored line by line, and increment the pointer p to
(p + l × c)

loadvt(V, p): load the content of the vector V from MEMORY starting from
the address p, and increment the pointer p to (p + l)

storevt(V, p): store the content of the vector V to MEMORY starting from the
address p, and increment the pointer p to (p + l)

mmm(M1, M2, M3): the matrix M1, is multiplied with the matrix M2 and the result
is stored as M3

conv(M1, V, M2, k, s): the matrix M1 is convoluted, with stride s, using a
k × k filter stored line by line in the vector V and the resulting feature plan is
stored as M2

sigmoid(M1, M2): the activation function sigmoid is applied to the matrix M1
with result as M2

relu(M1, M2): the activation function ReLU is applied to the matrix M1 with
result as M2

pooladd(M1, M2, q, s): the content of the matrix M1 is pooled to the sum
of the values of the q × q pooling window with stride s, and the result is stored
as matrix M2

poolmax(M1, M2, q, s): the content of the matrix M1 is pooled to the max-
imum of the values of the q × q pooling window with stride s, and the result is
stored as matrix M2

softmax(M1, M2): the softmax function is applied to M1 with result as M2
where the size of the matrices and vectors are limited by the parameters n, m, u
previously defined.

5 Implementation and Evaluation

Implementation and evaluation of the proposed system in implementing DNN are
presented in this section. Roughly speaking, we use map resource to accelerate
the convolution, the scan resource to accelerate the pooling, and the map-reduce
resources for the fully connected NN. The algorithms we propose for the main com-
putational patterns used in implementing a DNN are presented in versions easy to
accelerate on our proposed architecture.

All the experiments we have done with the proposed architecture are performed
on a cycle accurate simulator. The power estimate is based on the evaluation of the
optimised synthesizable RTL. Therefore, in this stage of the project only the main
functions of the NeuralKernel library are implemented and quantitatively evaluated.

Heterogeneous Computing System for Deep Learning 311

5.1 Fully Connected NN

The fully connected layer of a NN consists of a matrix-vector multiplication, the
application of an activation function to the resulting vector, and the associated data
transfer process. The algorithm is described in Fig. 11. Three processes are running
in parallel: (1) the control process, (2) the computation and (3) the data transfer.

The execution time is dominated, for small v by the load of the weight matrix
(load(M, p1)), or, for big v by the loop doInParallel. The application must be
designed, if possible, so as to maximize the value of v. Thus, the matrix M is loaded
only once for many uses.

For big v the execution time is dominated by the slowest process executed in
parallel in the doInParallel loop. Because the transfer time is executed in time
belonging to O(c), we pay attention to the main computational process: {mmm(M,
V, W); relu(W, W);}. In Fig. 12, the algorithm for matrix-vector multiplica-

/∗ ∗∗∗
FUNCTION NAME: Fu l l y Connec ted Neura l Network

− Load th e we igh t ma t r i x M s t a r t i n g w i th mxPo in t e r
− M u l t i p l y M w i th ’ v ’ v e c t o r s s t o r e d s u c c e s s i v e l y s t a r t i n g w i th

th e add r e s s p o in t e d by i nV e c tP o i n t e r
− Apply th e a c t i v a t i o n f u n c t i o n ReLU
− S t o r e th e r e s u l t i n g ’ v ’ v e c t o r s s u c c e s s i v e l y s t a r t i n g w i th th e

add r e s s p o in t e d by o u t V e c tP o i n t e r
∗∗∗ ∗ /
i n s tmx (M, l i n e , column) ; / / d e f i n e th e s i z e o f th e we igh t ma t r i x M
i n s tmx (V, 1 , column) ; / / d e f i n e th e s i z e o f th e i n p u t v e c t o r V
i n s tmx (W, 1 , column) ; / / d e f i n e th e s i z e o f th e ou t pu t v e c t o r W
i n i t s (p1 , mxPo in t e r) / / i n i t i a t e th e va lu e o f ma t r i x p o i n t e r
i n i t s (p2 , i nV e c t P o i n t e r) ; / / i n i t i a t e th e i n p u t v e c t o r p o i n t e r
i n i t s (p3 , o u tV e c t P o i n t e r) ; / / i n i t i a t e th e ou t pu t v e c t o r p o i n t e r

fu l lyConnec tedNN (M, p1 , p2 , p3 , n) ;
loadmx (M, p1) ; / / l oad in ACCELERATOR th e c o n t e n t o f M from p1
loadmx (V, p2) ; / / l oad in ACCELERATOR th e f i r s t V s t a r t i n g f rom p2
mmm(M,V,W) ; / / W <= M x V
r e l u (W,W) ; / / W <= ReLU (W)
l o ad (V, p2) ; / / l oad th e n e x t V s t a r t i n g f rom p2 + c
i <= 0 ;
do I n Pa ra l l e l {

{ whi le (i < v−1)
i = i +1; } / / c o n t r o l p r o c e s s run s on CONTROLLER

{ mmm(M,V,W) ;
r e l u (W,W) ; } / / c ompu ta t i on runn ing in MAP+REDUCE

{ s to remx (W, p3) ;
loadmx (V, p2) ; } / / t r a n s f e r r i n g p r o c e s s

}
s to remx (W, p3) ; / / th e l a s t t r a n s f e r o f th e r e s u l t W

Fig. 11 The algorithm for the fully connected neural network

312 M. Maliţa et al.

/∗ ∗∗∗
FUNCTION NAME: Ma t r ix−v e c t o r m u l t i p l i c a t i o n : W <= M ∗ V

− th e ma t r i x M w i th th e l i n e s M[i] , f o r i = 1 ,2 , . . . l
∗∗∗ ∗ /

f o r (i =1 ; i=< l ; i = i +1)
s h i f t R i g h t (S , S , r edadd (mul t (V,M[i] ,V)) ;

f o r (i =1 ; i<(l o g 2 n) ; i = i +1)
no o p e r a t i o n ; / / f o r th e l a t e n c y o f th e r e d u c t i o n add

W <= S

Fig. 12 Matrix-vector multiplication

tion is presented. For shiftRight(S, S, redadd(mult(V, M[i], V))
see Sect. 4.3 where the multiplication, shift and reduction operations are defined. The
execution time for this operation is 2 + log2n when it is executed only once. For l
executions, because of the pipelined hardware involved, the total execution time is
2 × l + log2n, where n is the number of cells in the MAP section of the ACCEL-
ERATOR. Thus, multiplying a l × c matrix with a c-component vector, with c ≤ n,
is executed in time belonging to O(l), i.e., a n-cell ACCELERATOR provides an
acceleration belonging to O(n).

What is the constant associated to the acceleration in O(n)? The constant is for
sure>1, because in amono-core processor the data transfer, the arithmetic operations
and the control operation are performed sequentially, while in our architecture the
doInParallel loop is possible because specific hardware is provided for the three
processes. We can claim that, for this function, the acceleration is supra-linear.

5.2 Convolutional Layer

5.2.1 Stride s = 1

Step 1: load from the MEMORY the matrix I which is considered the input plan
(Eq.6), as p lines (vectors) each of p components, and the filters as d sets of k × k
scalars, then set y ⇐ 1, and b ⇐ 1. The execution time t1 = const × (p2 + d × k2).

Step 2: we consider the filter F f as k “vertical” vectors:

F f
i =

⎡

⎢⎣
f f
1i
...

f f
ki

⎤

⎥⎦

for i = 1, . . . , k, and the p “vertical” vectors:

Heterogeneous Computing System for Deep Learning 313

I bj =
⎡

⎢⎣
xbj
...

x(b+k−1) j

⎤

⎥⎦

for j = 1, . . . , p, associated to the “band” b. Then we compute the matrix:

⎡

⎢⎢⎢⎣

I b1 × F1
1 I b2 × F1

1 . . . I bp × F1
1

I b1 × F1
2 I b2 × F1

2 . . . I bp × F1
2

...
...

. . .
...

I b1 × F1
k I b2 × F1

k . . . I bp × F1
k

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

V1

V2
...

Vk

⎤

⎥⎥⎥⎦

The computation is done in time t2 = 4k2 clock cycles.
Step3: the following (k − 1) shift operations are applied to the last (k − 1)vectors:

⎡

⎢⎢⎢⎣

V1

V2
...

Vk

⎤

⎥⎥⎥⎦ =>

⎡

⎢⎢⎢⎣

V1

V2 << 1
...

Vk << (k − 1)

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

V ′
1

V ′
2
...

V ′
k

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

v′
11 v

′
12 . . . v′

1p

v′
21 v

′
22 . . . v′

2p
...

...
. . .

...

v′
k1 v

′
k2 . . . v′

kp

⎤

⎥⎥⎥⎦

The operation is performed in t3 = 5(k − 1) clock cycles.
Step 4: the line of the featured plan is computed as follows:

Cb = [
cb1 cb2 . . . cb(p−k+1)

]

where, for i = 1, 2, . . . , (p − k + 1):

cbi =
k∑

j=1

v′
j i

The computation is done t4 = k + 1 clock cycles.
Step 5: if b < p − k + 1 then b ⇐ b + 1 and go to Step 2.
Step 6: The previous loop is repeated p − k + 1 times providing the result of

applying the filter Fy on the “image” I with stride s = 1:

C f =

⎡

⎢⎢⎢⎣

c11 c12 . . . c1(p−k+1)

c21 c22 . . . c2(p−k+1)
...

...
. . .

...

c(p−k+1)1 c(p−k+1)2 . . . c(p−k+1)(p−k+1)

⎤

⎥⎥⎥⎦

which is stored in the external memory. The execution of the transfer is in t6 =
const × (p − k + 1)2.

314 M. Maliţa et al.

Step 7: if f < d then d ⇐ d + 1, b ⇐ 1 and go to Step 2.
This loop is repeated d times resulting in the external memory a 3-dimension

array of (1 + (p − k)/s) × (1 + (p − k)/s) × d scalars.
The total execution time depends on the size of the input plan, the size of the filter

and the number of features, and is:

tconv(p, k, d) = ttrans f er + tcomputation =

ttrans f er = (const × (p2 + dk2 + d(p − k + 1)2)) ∈ O(dp2)

tcomputation = d(4(p − 2)k2 + (6p + 10)k − 4(p + k3 + 4)) ∈ O(pk2d)

The convolution looks like an IO bounded function. In order to balance the data
transfer with the computation we need to have a high bandwidth with MEMORY
(the value of const must be small), and the overall DCNN computation must be
organized with pooling layers applied before sending to MEMORY the feature plan.
Thus, the weight of computation will be increased and the data to be transferred
reduced.

5.2.2 Stride s > 1

For stride s > 1 the resulting 3-dimension array has the size:

(1 + (p − k)/s) × (1 + (p − k)/s) × d

because:

• vector Ci computed in Step 4 is:

Ci (s) = [cb1 x . . . x︸ ︷︷ ︸
s−1

cb(s+1) x . . . x︸ ︷︷ ︸
s−1

cb(2s+1) x . . . x︸ ︷︷ ︸
s−1

. . .]

where x stands for a meaningless value which must be removed from the final
result

• in Step 5 b ⇐ b + s resulting in Step 6 a C f matrix with 1 + (p − k)/s lines
only:

C f (s) =

⎡

⎢⎢⎢⎣

c11 x . . . x c1(s+1) x . . .

c(s+1)1 x . . . x c(s+1)(s+1) x . . .

c(2s+1)1 x . . . x c(2s+1)(s+1) x . . .
...

...
. . .

...
...

...
. . .

⎤

⎥⎥⎥⎦

The solution to provide a compact representation, by eliminating the xs, has two
versions, one for the usual case when s is a power of 2 and another when s is of some
value. In both cases we must add some sub-steps in Step 6.

Heterogeneous Computing System for Deep Learning 315

Version 1 for s = 2integer : in Step 6 we must use the scan operation
compact(i, j) (see Sect. 4.3.5). If the stride is s then applying log2s times
the function compact(i, j) on each line of the matrix C f (s) the meaningless
values x will be eliminated.

The execution time for this step is:

tcomp = (1 + (p − k)/s) × (2 + log2n) × log2s

maintaining the execution time of Step 6 dominated by the transfer.

Version 2 for s of some value: in Step 6 we must add the following sub-steps:
Sub-step 6.1: The matrix C f (s) is transposed. Results a matrix T (C f (s)) with

lines full of xs and lines containing only ci j scalars.
Sub-step 6.2: The matrix T (C f (s)) is compacted eliminating the lines of xs:

K f (s) =
⎡

⎢⎣
c11 c(s+1)1 c(2s+1)1 . . .

c1(s+1) c(s+1)(s+1) c(2s+1)(s+1) . . .
...

...
...

. . .

⎤

⎥⎦

Sub-step 6.3: The matrix K f (s) is transposed resulting the final result for the
filter f

S f (s) =

⎡

⎢⎢⎢⎣

c11 c1(s+1) c1(2s+1) . . .

c(s+1)1 c(s+1)(s+1) c(s+1)(2s+1) . . .

c(2s+1)1 c(2s+1)(s+1) c(2s+1)(2s+1) . . .
...

...
...

. . .

⎤

⎥⎥⎥⎦

which is a matrix s2 times smaller than the matrix for s = 1.
The execution time for Step 6 increases with

t6+ = ttranspose + 3p/s

Because, in our architecture ttranspose ∈ O(p2) the execution time of Step 6 remains
in the same magnitude order.

5.3 Pooling Layer

The input for pooling is a matrix of type I (see Eq.6). The output is the matrix of

(1 + (p − k)/s) × (1 + (p − k)/s)

316 M. Maliţa et al.

/∗∗
ALGORITHM NAME: So f tmax

− i n p u t : V = <x1 , . . . , xp>
− ou t pu t : V = <s igma 1 (V) , . . . , s igma p (V)>

∗∗ /
(1) V <= V − redmax (V) ;
(2) V <= V − lnLUT (redsum (expLUT (V))) ;
(3) V <= expLUT (V) ;

Fig. 13 The softmax algorithm

components. The algorithm is similar to the one used for computing a feature plan in
the convolutional layer for s > 1. Instead of a filter on the receptive fields are applied
simpler functions. The differences are given by the lack of the filter, and occurs:

• in Step 2, where instead of I bi × F j
k is computed the sum

b+k−1∑
i=b

x ji or themaximum

MAXb+k−1
i=b x ji

• in Step 4, where is maintained ci =
k∑
j=1

v′
j i or is computed ci = MAXk

j=1v
′
j i .

Thus, the computation time is evaluated in the same way, but refers to smaller input
matrices.

5.4 Softmax Layer

For the softmax layer the exponential and logarithmic functions are computed using
LUTs because the accuracy offered by this way is enough in the domain of NN.
In our implementation we use a LUT for the logarithm, logLUT, stored in the
data memory of CONTROLLER, and another LUT for exponentiation, expLUT,
replicated in each of the n cells of ACCELERATOR.

According to the solution presented in Sect. 2.4 the algorithm on our acceler-
ator is shown in Fig. 13. The execution time is tso f tmax = 9 + 4log2n. The loop
MAP → REDUCE → CONT ROLLER → MAP is closed two times, and
both, the reduction and the distribution network are log-depth. In step (1) of the
algorithm CONTROLLER sends back to the MAP array, through a log-stage pipe,
the maximum value of the vector V received from a log-depth circuit from the MAP
array. In the second step of the algorithm, redsum is received by CONTROLLER
in log-time, and the logarithm is sent back in the same time to the array. Thus the
acceleration of this layer is in O(n/ log n).

The latency introduced by the reduction operations can be avoided, as we did
for matrix-vector multiplication, if the function is applied to a stream of vectors,
[V1, V2, . . . , Vu], accumulated in the local memories distributed along the cells of

Heterogeneous Computing System for Deep Learning 317

the array. Then the values formaxi = redMax(Vi) can be stored in the data memory
of CONTROLLER. If n ∼ u then this computation is done in O(u) time avoiding the
contribution of log2n for eachmaxi . Similarly, the values for redsum(expLUT (Vi))

are treated. Thus, the computation will be accelerated by O(n).

6 Conclusions

1. The acceleration provided for each layer is in O(n) for a n-cell accelerator.
Sometimes, the constant associated to O(n) is > 1, i.e., the acceleration is supra-
linear, because the control, the transfer and the computation are done in parallel (see
Sect. 5.1).

2. For MSRA, α = actual Per f ormance/peakPer f ormance in performing the
computations associated to the stages of DNN is very high. Usually, α > 0.8.
3. The data transfer between ACCELERATOR and MEMORY is transparent to the
computational process. Thus, the effect of the bottleneck between ACCELERATOR
and MEMORY is reduced.
4. The power consumption in our programmable system is 680 TGOPS/W2 not far
from the power consumption per Tensor operation provided by the TPU circuit.

GFOPS/Watt is 2× higher than for many-cores, and 3× higher than for multi-
cores.
5. But, wemust pay attention to how the computational layers are interleavedwith the
data transfer stages in the implementation of an actual DNN. The main advantage
in this respect for our architecture is the local memory in each cell of the MAP
section. If this memory is big enough, then some data transfers can be avoided.
Another advantage for our architecture is the possibility to transfer data in parallel
with the computational process (see the algorithm for matrix-vector multiplication in
Fig. 12). The overall α coefficient, taking into account also the transfers between the
local memory in cells and MEMORY (see Fig. 8), decreases a little if the algorithms
do ignore the possibility of transparent transfers.
6. BecauseMSRA has few characteristics similar to the Streaming SIMDExtensions
(SSE) we must emphasize that the main differences consist of:

1. the control at the level of MSRA
2. the predicated execution according to the local state of each cell
3. the scan and reduction mechanism, which allows fast and efficient global vector

to vector and vector to scalar operations
4. the large amount of local storage at the cell level, instead of the limited register

file system in SSE

2This peak performance is achievable taking in consideration the operations performed simulta-
neously in the MAP section and in the REDUCE section (see Fig. 9). This happens, for example,
when matrix-vector multiplication is performed.

318 M. Maliţa et al.

5. data and programs in MSRA are provided through simple buffer-like memories,
due to the high predictability of their content, unlike in the SSE system where
data and programs are provided through the area and energy consuming cache
memory system

6. search and scan instructions in the MSRA approach help advanced stream, list or
sparse matrix operations.

References

1. Andonie, R., Malita, M.: The connex array as a neural network accelerator. In: Proceedings of
the IASTED International Conference on Computational Intelligence, Banff, Alberta, Canada,
2–4 July, pp. 163–167 (2007)

2. Andonie, R., Malita, M., Stefan, M. G.: MapReduce: from elementary circuits to cloud. In:
Kreinovich, V. (ed.) Uncertainty Modeling. Studies in Computational Intelligence, pp. 1–14.
Springer, Cham (2017)

3. Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran, J., Catanzaro, B., Shelhamer, E.:
cuDNN: efficient primitives for deep learning. https://arxiv.org/pdf/1410.0759.pdf (2014)

4. Cireşan, D. C., Meier, U., Masci, J., Gambardella, L. M., Schmidhuber, J.: Flexible, high
performance convolutional neural networks for image classification. In: Proceedings of the
Twenty-Second International Joint Conference onArtificial Intelligence, pp. 1237–1242 (2011)

5. Georganas, E., Avancha, S., Banerjee, K., Kalamkar, D.D., Henry, G., Pabst, H., Heinecke, A.:
Anatomy of high-performance deep learning convolutions on SIMD architectures. SC. https://
arxiv.org/pdf/1808.05567.pdf (2018)

6. Harris„M.: Mixed-precision programming with CUDA 8. https://devblogs.nvidia.com/mixed-
precision-programming-cuda-8/ (2016)

7. Hennessy, J.L., Patterson, D.: Computer Architecture A Quantitative Approach, Sixth edn.
Morgan Kaufmann (2019)

8. Jouppi, N.P., Young, C., Patil, N., Patterson, D., et al.: In-datacenter performance
analysis of a tensor processing unitT M . In: 44th International Symposium on Com-
puter Architecture (ISCA), Toronto, Canada, 26 June. https://drive.google.com/file/d/
0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view (2017)

9. Kennedy, P.: Case study on the Google TPU and GDDR5 from Hot Chips 29. https://www.
servethehome.com/case-study-google-tpu-gddr5-hot-chips-29/ (2017)

10. Kumar, A., Trivedi, M.: Intel scalable processor architecture deep drive. https://en.wikichip.
org/w/images/0/0d/intel_xeon_scalable_processor_architecture_deep_dive.pdf (2017)

11. Li, C., Yang, Y., Feng, M., Chakradhar, S., Zhou, H.: Optimizing memory efficiency for deep
convolutional neural networks on GPUs, SC ’16. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, Salt Lake City,
UT, pp. 633–644. https://arxiv.org/ftp/arxiv/papers/1610/1610.03618.pdf (2016)

12. Lorentz, I., Malita, M., Andonie, R.: Evolutionary computation on the connex architecture. In:
Proceedings of The 22nd Midwest Artificial Intelligence and Cognitive Science Conference
(MAICS 2011), pp. 146–153 (2011)

13. Malita, M., Stefan, G.M., Thiébaut, D.: Not multi-, but many-core: designing integral parallel
architectures for embedded computations. ACM SIGARCH Comput. Archit. News 35(5), 32–
38 (2007)

14. Malita, M., Stefan, G.M.: Map-scan node accelerator for big-data. In: 2017 IEEE International
Conference onBigData (BIGDATA), 4thWorkshop onAdvances in Software andHardware for
Big Data to Knowledge Discovery, 11–14 December 2017, Boston, MA, USA, pp. 3442–3447.
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/S18203.pdf (2017)

https://arxiv.org/pdf/1410.0759.pdf
https://arxiv.org/pdf/1808.05567.pdf
https://arxiv.org/pdf/1808.05567.pdf
https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/
https://devblogs.nvidia.com/mixed-precision-programming-cuda-8/
https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view
https://drive.google.com/file/d/0Bx4hafXDDq2EMzRNcy1vSUxtcEk/view
https://www.servethehome.com/case-study-google-tpu-gddr5-hot-chips-29/
https://www.servethehome.com/case-study-google-tpu-gddr5-hot-chips-29/
https://en.wikichip.org/w/images/0/0d/intel_xeon_scalable_processor_architecture_deep_dive.pdf
https://en.wikichip.org/w/images/0/0d/intel_xeon_scalable_processor_architecture_deep_dive.pdf
https://arxiv.org/ftp/arxiv/papers/1610/1610.03618.pdf
http://users.dcae.pub.ro/~gstefan/2ndLevel/technicalTexts/S18203.pdf

Heterogeneous Computing System for Deep Learning 319

15. Smith, R., Oh, N.: The NVIDIA Titan V preview—Titanomachy: war of the Titans. In:
AnandTech. https://www.anandtech.com/show/12170/nvidia-titan-v-preview-titanomachy/2
(2017)

16. Stefan, G.M., Sheel, A., Mîţu B., Thomson, T., Tomescu, D.: The CA1024: a fully pro-
grammable system-on-chip for cost-effective HDTV media processing. In: Stanford Univer-
sity: Hot Chips: A Symposium on High Performance Chips, August 2006. https://youtu.be/
HMLT4EpKBAw at 35:00 (2006)

17. Stefan, G.M., Malita, M.: Can one-chip parallel computing be liberated from ad hoc solutions?
Acomputationmodel based approach and its implementation. In: 18th InternationalConference
on Circuits, Systems, Communications and Computers, pp. 582–597 (2015)

18. Yuan, B.: Efficient hardware architecture of softmax layer in deep neural network. In: 2016
29th IEEE International System-on-Chip Conference (SOCC), pp. 323–326 (2016)

19. Convolutional Neural Network. 3 things you need to know. https://www.mathworks.com/
solutions/deep-learning/convolutional-neural-network.html (2019)

20. Cloud TPU. System Architecture. https://cloud.google.com/tpu/docs/system-architecture
(2019)

21. The Future is Hybrid Trends in Computing Hardware. https://www.xcelerit.com/resources/
the-future-is-hybrid-trends-in-computing-hardware/ (2017)

https://www.anandtech.com/show/12170/nvidia-titan-v-preview-titanomachy/2
https://youtu.be/HMLT4EpKBAw
https://youtu.be/HMLT4EpKBAw
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://cloud.google.com/tpu/docs/system-architecture
https://www.xcelerit.com/resources/the-future-is-hybrid-trends-in-computing-hardware/
https://www.xcelerit.com/resources/the-future-is-hybrid-trends-in-computing-hardware/

Progress in Neural Network Based
Statistical Language Modeling

Anup Shrikant Kunte and Vahida Z. Attar

Abstract Statistical Language Modeling (LM) is one of the central steps in many
Natural Language Processing (NLP) tasks including Automatic Speech recognition
(ASR), Statistical Machine Translation (SMT), Sentence completion, Automatic
Text Generation to name a few. Good Quality Language Model has been one of
the key success factors for many commercial NLP applications. Since past three
decades diverse research communities like psychology, neuroscience, data compres-
sion,machine translation, speech recognition, linguistics etc, have advanced research
in the field of LanguageModeling. First we understand themathematical background
of LM problem. Further we review various Neural Network based LM techniques
in the order they were developed. We also review recent developments in Recurrent
Neural Network (RNN) Based Language Models. Early LM research in ASR gave
rise to commercially successful class of LMs called as N-gram LMs. These class of
models were purely statistical based and lacked in utilising the linguistic information
present in the text itself. With the advancement in the computing power, availability
of humongous and rich sources of textual data Neural Network based LM paved
their way into the arena. These techniques proved significant, since they mapped
word tokens into a continuous space than treating them as discrete. As NNLM per-
formance was proved to be comparable to existing state of the art N-gram LMs
researchers also successfully used Deep Neural Network to LM. Researchers soon
realised that the inherent sequential nature of textual input make LM problem a good
Candidate for use of Recurrent Neural Network (RNN) architecture. Today RNN is
the choice of Neural Architecture to solve LM by most practitioners. This chapter
sheds light on variants of Neural Network Based LMs.

Keywords Statistical language modeling · Natural language processing ·
Artificial intelligence · Machine learning · Deep learning

A. S. Kunte (B) · V. Z. Attar (B)
College of Engineering Pune, Wellesley Road, Shivajinagar, Pune 411005, Maharashtra, India
e-mail: kas15.comp@coep.ac.in; kunte.anup@gmail.com

V. Z. Attar
e-mail: vahida.comp@coep.ac.in

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0_11

321

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31756-0_11&domain=pdf
mailto:kas15.comp@coep.ac.in
mailto:kunte.anup@gmail.com
mailto:vahida.comp@coep.ac.in
https://doi.org/10.1007/978-3-030-31756-0_11

322 A. S. Kunte and V. Z. Attar

1 Introduction

Statistical Language modeling (LM), referrers to creation of an abstract model of
the natural language content, that can be used for understanding the nuances of the
language, automatically generating language contents or translating them to other
language. During past three to four decades, LM has seen, a lot of attention by
diverse research communities ranging from psychology, neuroscience, data com-
pression, machine translation, speech recognition, linguistics to mention few. SLM
has been applied to many NLP tasks including, but not limited to, automatic speech
recognition, spelling correction, text generation, machine translation, syntactic and
semantic processing, optical character recognition and handwriting recognition.

Statistical estimation techniques like N-gram models became popular choice,
owing to the simplicity of construction, applicability across diverse set of languages
and availability of ever increasing amount of on-line language resources which these
knowledge impoverished but data optimal techniques strive on.

The success story of N-grammodels kind of stymied researchwork on approaches
based on linguistic knowledge. With the widely cited work of Bengio et al. [1] in
2003, Artificial Neural Networks (ANN) were first successfully applied to the LM,
in order to address the data sparseness problem present in N-gram models. Besides
predicting the next word Neural Network LanguageModel (NNLM) could also learn
a real valued vector representation for every word in a predefined vocabulary. Right
from their inception, NNLMs showed nearly equivalent results compared to N-gram
counter part. These models also proved complimentary to the N-gram models when
used as an ensemble model alongside some N-gram variant.

We discuss major milestones that shaped the advances in development of various
Deep Neural Network based LMs. Initial focus of NNLM research was on devis-
ing better training procedures, reducing the training time and number of parameters
required to train while keeping model performance unchanged. The increased com-
puting power and availability of ever increasing amounts of linguistic resources
meant, NNLMs soon became models of choice for many researchers. Researchers
used Feed Forward Architectures and experimented with adding hidden layers to it
in order to make it deep. These Deep NNLMs (DNNLM) were successful enough to
create some degree of confidence in researchers for experimenting with the network
architectures used for NNLMs.

Textual data used as input to LMs is sequential in nature. Recurrent Neural Net-
work (RNN) architectures are foundmore appropriate to handle such sequential data,
hence RNNLMswere soon developed. Today these LMs have proved to be themodel
of choice for LM, by many practitioners in the field. RNN based models were good
at encoding long term dependencies but had known weakness that of vanishing or
exploding gradient which meant training them using Back Propagating gradient was
difficult. To address these issues researchers came up with modified RNN architec-
tures like Long Short Term Memory (LSTM), Gated Recurrent Units (GRU). These
architectures could address the long term dependencies found in the natural language
content.

Progress in Neural Network Based Statistical Language Modeling 323

TraditionallyLMwas considered as a task of predicting sentence probability based
on words as linguistic units which made these models restricted to fixed vocabulary.
Recently researchers are experimenting with use of sub-word information to fuel
the better training of LMs. These include use of Char Convolution Neural Network,
QasiRNN to mention a few.

In the next sectionwe understand themathematical model of word level Statistical
Language Modeling and also briefly discuss about the N-gram Language models
which were very popular baselines for LM for long time. Then we discuss some
important extensions to basic N-grammodels. In the next section we look at NNLM,
a model proposed by Bengio et al. [1], in an attempt to understand the use of Neural
Networks Architecture to solve LMs. In next section we attempt to present various
neural network architectures employed by researcher to solve LM. In the next section
we discuss the standard evaluation metrics used by LM researchers and also list out
the state of the art (STOA) shown by various Neural Network Language models
proposed in the literature on popular benchmark data sets. In the concluding section
we try to comprehend where the field of NNLM is moving currently.

2 Statistical Language Modeling

Language modeling is the art of determining the joint probability of occurrence of a
sequence of linguistic tokens. We will consider word as linguistic token and hence
will try to find out probability distribution of all sentences in a training corpus.
This is equivalent of determining probability, P(w1, w2, . . . , wn) of every sentence
w1, w2, . . . , wn . Herewi represents i th word in the sentence. Typically we determine
the sentence probability with

P(w1, w2 . . . , wn) =
n∏

i=1

P(wi |w1 . . . wi−1) (1)

So it becomes important to find out P(wi |w1 . . . wi−1). As i tend to take larger
values, this computation becomes costlier. To simplify this computation, we typically
consider Markov assumption, which for example is like saying, the probability of
occurrence of i th word in sequence is independent of any previous context word but
the last two i.e. wi−2, wi−1. This simplifies Eq. (1) to:

P(wi |w1 . . . wi−1) ≈ P(wi |wi−2, wi−1) (2)

Equation (2) represents simple Language model referred to as tri-gram language
model (3-gram). Despite of it’s simplicity it proves effective for many practical
applications. For the problems which require larger context histories, we can gener-

324 A. S. Kunte and V. Z. Attar

alize it to N-grammodel where preceding N − 1 length word sequence is considered
in estimation of probability of current word:

P(wi |w1 . . . wi−1) ≈ P(wi |wi−n+1 . . . wi−1) (3)

2.1 N-Gram Language Model

Equation (3), computes probability of occurrence of word (w) given the context
window (h) of n − 1 previous words which is P(w|h). This can be estimated using
maximum likelihood estimate which simply uses word co-occurrence frequencies to
estimate P(w|h)

P(w|h) ≈ C(w, h)

C(h)
(4)

In Eq. (4), C(w, h) denotes number of times sequence (h, w) is seen where as, C(h)

denotes number of times (h) is seen in the training dataset. Unigram (1-gram) being
at lower bound for N-gram models where, |h| = 0 and consequent models being
bi-gram, tri-gram and so on as we increase length of context window by one. The
Length of context window plus one determines the order of model.

It was observed that many of the probability estimates for higher order N-grams
comeout to be zero. (simplybecause thoseword sequences donot occur in the training
sets.) A technique called smoothing was successfully applied to overcome this issue.
Smoothing works by redistributing probability estimates between seen and unseen
(zero-frequency) events, by exploiting the fact that some estimates, mostly those
based on single frequency, are greatly over-estimated. Chen et al. [2] give a detailed
overview and empirical comparison of various smoothing techniques. As cited in
[3], the modified Kneser–Ney smoothing (KN) is reported to provide consistently
the best results among all the smoothing techniques, at least for word-based language
models.

Simplicity in their overall make up, easy applicability to any domain as well
as language are the significant advantages in favor of N-gram based models. Till
date N-gram score over many advanced techniques due to above reasons. Advanced
techniques mostly are more complicated and provide marginal improvements that
are not critical over basic N-grams.

The Downside of the N-gram story was problem termed as data sparsity and their
lack of ability to scale easily to longer context windows. The number of possible N-
grams increase exponentially with length of context which makes them not suitable
for capturing long term context patterns. The problem is more profound as training
data increases, as much of the patterns from training data cannot be effectively
represented by N-grams and cannot be discovered during training. Many advanced
techniques were proposed In the next section we will look at some of the early
language modeling techniques for completeness.

Progress in Neural Network Based Statistical Language Modeling 325

3 Extensions to N-Gram Language Model

Despite the indisputable success of basic N-gram models, it was always obvious
that these models were not powerful enough to describe language at sufficient level.
N-grammodels solely depend on howmuch generalization is captured in the training
set. As training size would increase exponentially to capture generalization, model
parameters would also increase in similar order and the overall model quality will
be adversely effected. Thus N-gram models lack ability to extrapolate from the
information presented to it by training data.

As stated earlier, LMs have been studied by diverse research communities there
exist different language modeling techniques and number of variations in each tech-
nique in the literature published. While it is out of scope of this work to describe all
of these techniques in detail, we will at least make short introduction to the important
techniques and provide references for further details.

Cache Based Many studies in speech recognition have empirically shown that
there is significantly higher chance of repetition of the rare word if it has occurred
in recent history.Cachemodels [4] are supposed to dealwith this regularity, and are
often represented as another N-grammodel, which is estimated dynamically from
the recent history of usually few hundreds of words and interpolated with themain
(static) N-gram model. Cache models provide truly significant improvements in
perplexity (sometimes even more than 20%), there exists a large number of more
refined variants that can capture the same patterns as the basic cache models for
example, topic models, latent semantic analysis based model [5], trigger models
[6] or dynamically evaluated models [4, 7].

As models using variants of caching showed considerable improvement in
PPL and relative simple construction, these were popular among LM community.
Often in research papers these were compared to weak baselines like bi-gram or
tri-grammodels thus these improvements in PPLwere prone tomiss interpretation
as pointed out byGoodman et al. [3] in his reviewofmanyvariants of thesemodels.
In his paper he also explains how the errors may get locked into the cache model,
as a wrongly recognized word may also creep into cache and further hurt word
error rate despite a good deal of perplexity improvements.

A remedy to this as suggested by Goodman et al. [3] is to use user feedback
to only store correct words in cache, but its not a practical solution. Advanced
versions, like trigger models or LSA models were reported to provide interesting
WER reductions, yet these models were not commonly used in practice.

It is thus important to be careful when conclusions are made about a LM
technique just based on intrinsic metric.

Class Based Higher order N-gram face a unique problem of data sparsity as most
of the higher order sequences are rarely show up in the training data. Introduction
of equivalence classes may alleviate this problem in higher order N-grams. In
the simplest case, each word is mapped to a single class, which usually repre-
sents several words. Next, N-gram model is trained on these classes. This allows
better generalization to novel patterns which were not seen in the training data.

326 A. S. Kunte and V. Z. Attar

Improvements are usually achieved by combining class based model and the N-
gram model. There exists a lot of variations of class based models, which often
focus on the process of forming classes.

As suggested by Goodman et al. [3] class based models show moderate per-
plexity improvements but they give considerable improvements in word error rate
especially when the training data is of smaller size. Thismakes class basedmodels
more attractive than cache based models.

The disadvantages of class based models include high computational com-
plexity during inference (for statistical classes) or reliance on expert knowledge
(for manually assigned classes). Also as reported in Goodman et al. [3] improve-
ments tend to vanish with increased amount of the training data. They feel these
models were less useful in production environments.

Structured The statistical language modeling was criticized heavily by the lin-
guists from the very first day of its existence. Objections from the linguistic com-
munity usually address the inability of N-gram models to represent longer term
patterns that clearly exist between words in a sentence. Words in a sentence are
often related, even if they do not lie next to each other. N-grams can’t effectively
encode this due to the fact that they are nothing better than Finite State Machines
which themselves are incapable of doing so. However, these patterns can be often
effectively described while using for example context free grammars (CFG).

This was the motivation for the structured language models that attempt to
bridge differences between the linguistic theories and the statistical models of
the natural languages. The sentence is viewed as a tree structure generated by
a context free grammar, where leaves are individual words and nodes are non-
terminal symbols. The statistical approach is employedwhen constructing the tree:
the derivations have assigned probabilities that are estimated from the training
data, thus every new sentence can be assigned probability of being generated by
the given grammar.

The advantage of thesemodels is in their theoretical ability to represent patterns
in a sentence across many words. Also, these models make language modeling
muchmore attractive for the linguistic community. However, there are many prac-
tical disadvantages of the structured language models which may include com-
putational complexity, sometimes unstable behavior, ambiguity due to possibility
of many parse trees for single sentence, questionable performance when applied
to spontaneous speech recognition. Also it requires large amount of manual work
that has to be done by expert linguists.

Despite great research efforts, the results of these techniques remained ques-
tionable. However, it was certain that the question addressed by them of consid-
eration of long context patterns in the natural languages was an important one for
generating more intelligent models of natural language.

Progress in Neural Network Based Statistical Language Modeling 327

Maximum Entropy Maximum entropy (ME)model is an exponential model with
a form

P(w|h) = e
∑

i λi fi (w,h)

Z(h)
(5)

where w is a word in a context h and Z(h) is used for normalizing the probability
distribution represented by

Z(h) =
∑

wi∈V
e
∑

j λ j f j (wi ,h) (6)

Thus it can be viewed as a model that combines many feature functions fi (w, h).
The problem of training ME model is to find weights λi of the features, and also
to obtain a good set of these features, as these are not automatically learned from
the data. Usual features are N-grams, skip-grams, etc.

ME models have shown big potential, as they can easily incorporate any fea-
tures. Rosenfeld [8] used triggers andword features to obtain very large perplexity
improvement, as well as significant word error rate reduction. Chen et al. [9] pro-
posed model M, which is a class based maximum entropy model. This model
is reported to have a state-of-the-art performance on a broadcast news speech
recognition task [10], when applied to a very well tuned system that is trained
on large amounts of data and uses state of the art discriminative loss trained
acoustic models. The significant reductions in WER are reported against a good
baseline language model, 4-gram with modified Kneser–Ney smoothing, across
many domains and tasks. While unique algorithms for training ME models were
developed by the speech recognition community, Mikolov in thesis [11] showed
that ME models can be easily trained by stochastic gradient descent. In fact, ME
models can be seen as a simple neural network without a hidden layer.

Thus, ME models can be seen as a very general theoretically well founded
technique that has already proven its potential in many fields.

Neural Network Neural Network Language Model (NNLM) by Bengio et al. [1,
12] is set of two follow up papers which are considered as first notably successful
attempt at usingNeuralNetwork based solution to LMproblem. This is parametric
approach to LM based on maximizing log likelihood of training data. The neural
network architecture used had a single hidden layerwith feed forward architecture.
NNLM not only solves LM by finding probability distribution of word sequences
but also learns to represent words as vector representation in a continuous space.
This adds much value to NNLM as these vector inputs are useful in many tasks
in NLP.

Now we will shift our focus to use if Neural Network Architecture to solve LM
problem. To begin with in the next section we discuss how Bengio et al. [1], applied
Neural Network Based model to solve work level SLM.

328 A. S. Kunte and V. Z. Attar

Table 1 Neural architectures applied to LM

Model used NN architecture

Neural network language model Single layer feed forward

Deep neural network language model Deep feed forward

Vanilla RNN Recurrent neural network

Class based RNN Recurrent network classed output

RNN with LSTM cell Long short term memory cell RNN

RNN with GRU cell Gated recurrent unit RNN

Bidirectional RNN Bi direction input RNN

Char aware neural LM Convolutional network with LSTM RNN

4 Neural Network Based Language Modeling

Starting with Bengio et al. [1] in 2003 researchers have used various neural network
architectures to build models to solve LM. Table1 shows some of important variants
of NN Architectures employed.

Wewill briefly review important neural network architectures applied by different
researchers to LM problem.

4.1 Neural Network Language Model (NNLM)

Bengio et al. [1] introduced NNLM which was a parametric language model based
on Feed Forward Neural Network Architecture. This model could simultaneously
learn distributed representation of each word in terms of distributed word vectors
and learns probability distribution for word sequences, expressed in terms of these
representations. Figure1 shows architecture of NNLM proposed in Bengio et al. [12]
in a follow up paper.

As seen from the Fig. 1 the input context words are converted to 1-hot orthog-
onal vector representation which are projected to a lower dimensional space using
shared vector P to reduce the input parameter size. If vocabulary size is of the order
200K words, projection layer order is 100–300. This layer then provides input to
hidden layer which applies non linearity in the form of hyperbolic tangent or sigmoid
function. Finally output layer consisting of a softmax layer achieves the objective of
Language model. Softmax layer computes:

p(wt |wt−1
t−n+1) = eh

T v
′
wt

Σ
wi εV

exp(hT v
′
wi

)
(7)

Progress in Neural Network Based Statistical Language Modeling 329

Fig. 1 Neural network language model

The inner product eh
T .v

′
wt computes the (unnormalized) log-probability of word wt ,

which are normalized by the sum of the log probabilities of all words in V . The
network thus satisfies the objective of Language Modeling. The network is trained
usingErrorBackPropagation algorithmalongwith gradient descent for optimization.

In the follow up work Bengio et al. suggested strategies to improve the training
process of the NNLM as they called the model using techniques like hierarchical
output layer based on wordnet or pre trained clustering which reduced computations
at output softmax layer considerably with a slight reduction in performance. Many of
the follow up work in Neural LM seem to use a similar techniques suitably modified
as required by the architectures they used and got results on similar orders. They
also suggested use of idea of importance sampling, noise constrictive estimation
as an option to full softmax calculations which would lead to considerable overall
computational complexity. They also gave paralleled implementation of the training
process which greatly reduced amount of time required by training process.

In 2012 paper, Arisoy et al. [13] experimented with NNLM architecture by adding
more hidden layers to it which gave rise to Deep Neural Network LM. The additional
hidden layers could improve the quality of LM trained without major increase in the
training time as the dominating factor in NNLM’s computational cost was the output
softmax. They also experimented with around with number of hidden units and
projection sizes.

330 A. S. Kunte and V. Z. Attar

Fig. 2 Vanilla RNNLM
architecture

Some researchers found thesemodelswere over fitting the training data, therewere
problems in deep networks like exploding and vanishing gradient BP algorithm. To
counter aforementioned issues different regularization techniques were introduced
for both shallow as well as deep feed forward neural network language models. The
regularization’s included L1, L2, Dropout, Blackout etc.

4.2 Recurrent Neural Network Language Models (RNNLM)

Recurrent Neural Networks (RNN) architecture have proven to be choice for
sequence encoding applications and hence have become popular architectural choice
for Deep Neural Network Language Models. Contrary to FNNs, RNN architecture,
increases context length indefinitely using recurrent connection of hidden layers.
Figure2 shows Vanilla RNN architecture. The input layer consists of a vector w(t)
that represents the current word wt encoded as 1 of V hot vector and vector s(t − 1)
that represents output values in the hidden layer from the previous time step. After
the network is trained, the output layer y(t) represents P(wt+1|wt , s(t − 1)).

The network is trained by stochastic gradient descent using either usual error back
propagation (BP) algorithm, or error back propagation through time (BPTT) [14].

The network is represented by input, hidden and output layers and corresponding
weight matrices. Matrices U and W between the input and the hidden layer, and
matrix V between the hidden and the output layer. Output values in the layers are
computed as follows:

Progress in Neural Network Based Statistical Language Modeling 331

Fig. 3 RNNLM with
classing

s j (t) = f (
∑

i

wi (t)u ji +
∑

l

sl(t − 1)w jl) (8)

yk(t) = g(
∑

j

s j (t)vk j) (9)

where f (z) and g(z) are sigmoid and soft-max activation functions respectively.
This representation we do not include bias term for simplicity of representation. The
output layer y represents a probability distribution of the next word wt+1 given the
history. The time complexity of one training step will be proportional to:

O = H ∗ H + H ∗ V = H ∗ (H + V) (10)

where H is size of the hidden layer and V is size of the vocabulary. Figure3 shows
how to add class based output layer in RNNLM.

4.3 Long Short Term Memory Language Models (LSTMLM)

Recurrent Neural Network Architecture when used as RNNLM proved as good as
NNLMandN-grammodels with respect to the PPL improvements as shown bymany
researchers. These models were thought to capture the long term dependencies in
linguistic data by nature of there recurrent behavior. But the researcher soon realised
the Back Propagating error back words in time (BPTT) for training made the updates

332 A. S. Kunte and V. Z. Attar

diminish as you go few steps back. Also since the model does not have control over
what exactly to remember from the history context models, they could not show
the potential improvements they promised. De Mulder et al. [15] surveyed about
applications of RNN to Statistical Language Modeling. He mentions, three major
drawbacks of basic RNNLMs training a RNN is known to be very slow, fixed number
of hiddenneurons and small context size in practice due to vanishinggradient problem
experienced by BPTT algorithm.

The long short-termmemory (LSTM)contains recurrently connected subnets, also
called memory cells, were developed to increase the effective context size of RNN.
In LSTM architecture extends basic RNN by replacing hidden unit with memory
block. Each block contains one or more self-connected memory cells and three
multiplicative units namely input, output and forget gates. These multiplicative units
resembles memory cell operation of write, read and reset respectively. As long as
the input gate has an activation value near zero, the activation of the cell will not be
overwritten by the new inputs arriving in the network, and can therefore be made
available to the net much later in the sequence, by opening the output gate. Figure4
taken from [16] illustrates how a LSTMCell is composed of and Fig. 5 the LSTMLM
architecture.

The GRU (Gated Recurrent Unit) [17] is another variant of Recurrent Neural
Networks and is pretty similar to an LSTM. GRU does not have a cell state and used
the hidden state to transfer information. It have only two gates reset and update gate.
The update gate acts similar to the forget and input gate of an LSTM. It decides what
information to throw away and what new information to add. The reset gate is used to
decide how much past information to forget. GRU has considerably less parameters
and hence bit faster to train compared to LSTM architecture.

4.4 Bidirectional RNN

Basic RNN process data in forward direction that is history context is used to predict
next token. For many NLP applications though, it is desirable to work the input in
both the directions. This lead to development of the Bidirectional Recurrent Neural
Network (BRNN) architecture.

BidirectionalRNNs (BRNNs) process the data in both directionswith two separate
hidden layers, which are then fed forward to the same output layer. As illustrated in
the Fig. 5 from [16] a BRNN computes the forward hidden sequence

−→
h , he backward

hidden sequence
←−
h and the output sequence y by iterating the backward layer from

t = T to 1, the forward layer from t = 1 to T and then updating the output layer. When
we use LSTM for the hidden layer in BRNN it gives rise to Bi LSTM Network.
Researchers have successfully used this architecture for LM.

Progress in Neural Network Based Statistical Language Modeling 333

Fig. 4 Simple LSTM cell [16]

Fig. 5 LSTMLM
architecture [16]

334 A. S. Kunte and V. Z. Attar

5 Milestones in NNLM Research

NNLMhas seenmuch attention during past decade. In this section we present impor-
tant research papers that have shaped advances in NLM research. We compare these
research studies based on the neural network architecture, training algorithm, eval-
uation metric, special training recipes and corpus used.

Tables2 and 3 show important experimental settings used in these studies. Based
on these insights from the literature surveyed we feel any researcher who quest for
a novel NLM technique must address following issues:

• Accelerating Training process for Large Scale LM based of Neural Networks
pose unique challenges. This may involve using any one or combination of Biased
Importance Sampling, Noise Contrastive Estimation, Hierarchical Soft-max, Self
Normalizing Partition Function. One need to carefully characterize them.

Table 2 Various training methods used

Name of research
publication

Neural network
architecture

Training method used

Objective
function

Optimizer
stability

Training
algorithm

Neural network model
Bengio’ 03 [1]

FF Log likelihood Learning rate
scheduling

BP

Adaptive importance
sampling Bengio’ 06 [12]

FF Log likelihood Importance
sampling

BP

Training large scale NNLM
Mikolov ’11 [21]

RNN Log likelihood N.A. BPTT

RNNME Discriminative N.A.

Deep neural network
language model Arisoy’ 12
[13]

Deep FF N.A. N.A. BP

Blackout: speeding up
RNNLM with very large
vocabularies Shiaho’ 16 [22]

RNN variant Discriminative Gradient
clipping

BPTT

Learning rate
scheduling

Noise contrastive estimation
for large Vocabularies ’16
[23]

LSTM Log likelihood N.A. BPTT

Limits of language Modeling
’16 [24]

LSTM Discriminative Gradient
clipping

BPTT

LSTM with
Char cNN

Progress in Neural Network Based Statistical Language Modeling 335

Table 3 Literature survey analysis

Paper Evaluation
metric

Training method Corpus used Task used

Parameters Speedup

Neural network
model bengio’ 03
[1]

Intrinsic ∼V Parallel
implementation

Brown corpus N.A.

Adaptive
importance
sampling
Bengio’06 [12]

Extrinsic |V |
log |V | Biased

importance
Switch board
dataset

LVCSR

log |V | Hierarchical
decomposition

Training large
scale NNLM
Mikolov’11 [21]

Intrinsic << V Class based
output layer

Penn tree bank N.A.

Deep neural
network language
model Arisoy’12
[13]

Extrinsic N.A. N.A. Wall street journal ASR
WER

Blackout:
speeding up RNN
language models
with very large
vocabularies
Shiaho’16 [22]

Intrinsic << V Blackout PTB N.A.

1 Billion
benchmark

Noise contrastive
estimation for
large vocabularies
[23]

Extrinsic N.A. N.A. Wall street journal ASR

Limits of
language
modeling [24]

Intrinsic I ndp.of V Importance
sampling

1 Billion
benchmark

N.A.

• RNNLM and other variants of Deep Neural Networks based LM use BPTT during
their training process, hence we must address problems like Vanishing Gradient,
Exploding gradient. Reference [18] has shown how to deal with these problems.

• Literature shows that ensemble of various LMs always outperforms the base mod-
els. Right from the Non-parametric models like N-gram [3] and also NNLMs,
RNN LM [1, 7, 12, 19, 20] have shown same characteristics. Its challenging to
find a good ensemble of DNN which could be robust and easy for train.

• Another important issuewithNeuralMachineTranslationmodel is that of handling
rare word problem, Cho et al. [25] and Luong et al. [26].

336 A. S. Kunte and V. Z. Attar

• Another challenge is to study effectiveness of DNN LM for morphologically rich
language and to come up with a combinational model of character level and word
level granularity. One such study is [27] have proposed C2W (Compositional
Character to word) model which can be used as preprocessing layer for LSTM
based Deep LM.

6 Evaluation Metrics

Statistical languagemodel can be evaluatedwith either an intrinsicmetric or extrinsic
metric. Intrinsic metric like perplexity reflect the quality of model learned compared
to true model of language under consideration. Extrinsic metric like WER (Word
Error Rate) on the other hand, reflects the applicability of the model to the task under
consideration. Most of the researchers use either of them or both to analyze success
of language model.

1. The perplexity (PPL) of word sequence w is defined as:

PPL = K

√√√√
K∏

i=1

1

P(wi |w1 . . . wi−1)
(11)

Perplexity is closely related to cross entropy between some held out test data and
true model. It can be seen as exponential of average per-word entropy (geometric
average) of test data. Smaller the value of PPL better is the model quality.

2. The word error rate (WER) is defined as:

WER = S + D + I

N
(12)

where S is number of substitutions, D deletions and I insertions (each operation
can change, delete or add a single word). The WER is defined for the lowest
number of these operations that are needed to change the decoded utterance W1

to the reference utterance W, which has N words.
3. Bilingual Evaluation Understudy Score (BLEU) is another extrinsic metric

used in case of machine translation. It is a metric for evaluating a generated sen-
tence to a reference sentence. A perfect match results in a score of 1.0, whereas a
perfect mismatch results in a score of 0.0. The score was developed for evaluating
the predictions made by automatic machine translation systems. It is not perfect,
but does offer following compelling benefits:

• It is quick and inexpensive to calculate.
• Easy to understand.
• Language Independent.
• Correlate highly with human evaluation.

Progress in Neural Network Based Statistical Language Modeling 337

• It iswidely adoptedmetric in case ofmachine translation, language generation,
speech recognition, image captioning, text summarizing.

6.1 State of the Art PPL

There are a few benchmarks that people compare against for word-level language
modeling. The difference in size, style, and pre-processing result in different chal-
lenges and thus different state-of-the-art perplexities.

• Penn Treebank (PTB) contains articles from the Wall Street Journal and the
typical benchmark is the Mikolov-processed version. PTB has a vocabulary size
of 10K and training set of 890K tokens. The challenge here is learning from a
small amount of data. State-of-the-art is 47.7ppl by Yang et al. [28]. They train
with an AWD-LSTM (Merity et al. [29]) recurrent core containing 24 million
parameters, incorporate dropout almost everywhere, and use dynamic evaluation
[30] which allows the model to adapt to the test set. The state-of-the-art is 54.4
without this dynamic evaluation trick. A Kneser–Ney 5-gram achieves about 140
test ppl.

• Billion Word Benchmark is the biggest of all datasets used for benchmarking
LMs. It is compiled from English-text news [31]. It contains 800M words and a
vocabulary size of 800K. Oleksii Kuchaiev [32] model is still state-of-the-art with
24.3ppl. It is an LSTM with a bottleneck connection on the recurrent weights,
containing 34M parameters on the recurrent cell. In comparison, Kneser–Ney 5-
grams obtain a perplexity of 67 [31]. The Billion Word Benchmark randomizes
sentences which means models cannot take advantage of long term dependency
or context. Furthermore random sentences are assigned to train and test. Since
news articles can be very similar this does raise concerns about the fact that very
similar sentences occur within train and test. As a result theres less of a strain to
generalize, which means very large models which compress the training dataset
do well on this task there is less of an emphasis to generalize.

• WikiText-2 is a data set prepared by Salesforce (Merity et al. [29]) containing
text from Wikipedia. The train and test constitute separate articles, which is nice.
WikiText-2 is also small, it has a vocabulary of 30K and contains 2M training
tokens. Its kind of like a 2–3 times PTB and it does not appear to bring much
additional research insight, as the main bottleneck is the small amount of data.
The state-of-the-art is the same Yang et al. [28] paper, with 40.7ppl.

• WikiText-103 is another data set from Salesforce. This is much larger as the
vocabulary size is 270K and the training set contains 100M tokens. The test set
is the same as WikiText-2, but with the expanded vocabulary. The challenges
here are: long-term temporal dependence and the large vocabulary. The state-of-
the-art is 29.2ppl from Rae et al. 2018 [33]. They propose a memory-inspired
softmax layer, Hebbian Softmax, to better model rare words. The rest of the model
consists of a very simple single-layer LSTM of 2048 units with input dropout and

338 A. S. Kunte and V. Z. Attar

memory-based adaptation at test time [34, 35]. The total model size is about 17M
parameters for the LSTM and 138M parameters for the input/output embedding
matrix.

7 Conclusion

Statistical language modeling has been under research for more than 3 decades now.
Simple language models like N-grams which have proved effective in practice and
many More complex yet less practical models too. NLM has surely shown improve-
ment over N-gram models. Since the field is matured to an extent that there are
common recipes used by different researchers. With many variants of Deep NLMs
available, still properly tunedRNNLMwith LSTMorGRUcells beatmany advanced
NLMs with respect to PPL improvements. Recently researchers are concentrating
on use of sub word information to fuel better Language models at word level. Using
char level information makes these models independent of vocabulary.

References

1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language model. J.
Mach. Learn. Res. 3, 1137–1155 (2003)

2. Chen, J.G.S.: An empirical study of smoothing techniques for language modeling. In: Proceed-
ings of the 34th Annual Meeting of the ACL (1996)

3. Joshua, T., Goodman, J.: A bit of progress in language modeling extended version, Machine
Learning and Applied Statistics GroupMicrosoft Research. Technical Report, MSR-TR-2001-
72 (2001)

4. Jelinek, F., Merialdo, B., Roukos, S., Strauss, M.: A dynamic language model for speech
recognition. HLT 91, 293–295 (1991)

5. Bellegarda, J.R.:Amultispan languagemodeling framework for large vocabulary speech recog-
nition. IEEE Trans. Speech Audio Process. 6(5), 456–467 (1998)

6. Lau, R., Rosenfeld, R., Roukos, S.: Trigger-based language models: a maximum entropy
approach. In: IEEE International Conference in Acoustics, Speech, and Signal Processing,
ICASSP-93, vol. 2, pp. 45–48 (1993)

7. Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., Khudanpur, S.: Recurrent neural network
based language model. In: Interspeech, vol. 2, p. 3 (2010)

8. Rosenfeld R.: Adaptive statistical language modeling: a maximum entropy approach. Ph.D.
thesis, Carnegie Mellon University (1994)

9. Chen, S.F.: Shrinking exponential language models, In: Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North American Chapter of the Association
for Computational Linguistics, Association for Computational Linguistics pp. 468–476 (2009)

10. Chen, S.F., Mangu, L., Ramabhadran, B., Sarikaya, R., Sethy, A.: Scaling shrinkage-based
language models. In: IEEE Workshop on Automatic Speech Recognition & Understanding,
ASRU 2009, pp. 299–304 (2009)

11. Mikolov, T.: Statistical language models based on neural networks. Ph.D. thesis, BRNO Uni-
versity of Technology, Faculty of information Technology (2012)

12. Bengio, Y., Schwenk, H., Senécal, J.S., Morin, F., Gauvain, J.-L.: Neural probabilistic language
models. In: Innovations in Machine Learning, pp. 137–186, Springer (2006)

Progress in Neural Network Based Statistical Language Modeling 339

13. Arisoy, E., Sainath, T.N., Kingsbury, B., Ramabhadran, B.: Deep neural network language
models. In: Proceedings of the NAACL-HLT 2012 Workshop: Will We Ever Really Replace
the N-gram Model? On the Future of Language Modeling for HLT, pp. 20–28 (2012)

14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323(6088), 533 (1986)

15. De Mulder, W., Bethard, S., Moens, M.-F.: A survey on the application of recurrent neural
networks to statistical language modeling. Comput. Speech Lang. 30(1), 61–98 (2015)

16. Graves, A.: Supervised sequence labelling. In: Supervised Sequence Labelling with Recurrent
Neural Networks, pp. 5–13. Springer (2012)

17. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Ben-
gio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine
translation (2014). arXiv preprint arXiv:1406.1078

18. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.
ICML 3(28), 1310–1318 (2013)

19. Bengio, Y., Senécal, J.S.: Adaptive importance sampling to accelerate training of a neural
probabilistic language model. IEEE Trans. Neural Netw. 19(4), 713–722 (2008)

20. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing recurrent net-
works. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 8624–8628 (2013)

21. Mikolov, T., Deoras, A., Povey, D., Burget, L., Černockỳ, J.: Strategies for training large scale
neural network language models. In: IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU) 2011, pp. 196–201 (2011)

22. Ji, S., Vishwanathan, S., Satish, N., Anderson, M.J., Dubey, P.: Blackout Speeding up recur-
rent neural network language models with very large vocabularies (2015). arXiv preprint
arXiv:1511.06909

23. Zoph, B., Vaswani, A., May, J., Knight, K.: Simple, fast noise-contrastive estimation for large
rnn vocabularies. NAACL HLT, pp. 1217–1222 (2016)

24. Jozefowicz, R., Vinyals, O., Schuster, M., Shazeer, N.,Wu, Y.: Exploring the limits of language
modeling (2016). arXiv preprint arXiv:1602.02410

25. Cho, S.J.K., Memisevic, R., Bengio, Y.: On using very large target vocabulary for neural
machine translation (2014). CoRR arXiv:1412.2007

26. Luong, M.T., Sutskever, I., Le, Q.V., Vinyals, O., Zaremba, W.: Addressing the rare word
problem in neural machine translation (2014). arXiv preprint arXiv:1410.8206

27. Ling, W., Luís, T., Marujo, L., Astudillo, R.F., Amir, S., Dyer, C., Black, A.W., Trancoso, I.:
Finding function in form: compositional character models for open vocabulary word represen-
tation (2015). arXiv preprint arXiv:1508.02096

28. Yang, Z., Dai, Z., Salakhutdinov, R., Cohen, W.W.: Breaking the softmax bottleneck: a high-
rank RNN language model (2017). arXiv preprint arXiv:1711.03953

29. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing LSTM language models
(2017). arXiv preprint arXiv:1708.02182

30. Krause, B., Kahembwe, E., Murray, I., Renals, S.: Dynamic evaluation of neural sequence
models (2017). arXiv preprint arXiv:1709.07432

31. Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., Robinson, T.: One billion
word benchmark formeasuring progress in statistical languagemodeling (2013). arXiv preprint
arXiv:1312.3005

32. Kuchaiev, O., Ginsburg, B.: Factorization tricks for lstm networks (2017). arXiv preprint
arXiv:1703.10722

33. Rae, J.W., Dyer, C., Dayan, P., Lillicrap, T.P.: Fast parametric learning with activation memo-
rization (2018). arXiv preprint arXiv:1803.10049

34. Grave, E., Joulin, A., Usunier, N.: Improving neural language models with a continuous cache
(2016). arXiv preprint arXiv:1612.04426

35. Sprechmann, P., Jayakumar, S.M., Rae, J.W., Pritzel, A., Badia, A.P., Uria, B., Vinyals, O.,
Hassabis, D., Pascanu, R., Blundell, C.: Memory-based parameter adaptation (2018). arXiv
preprint arXiv:1802.10542

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1511.06909
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1412.2007
http://arxiv.org/abs/1410.8206
http://arxiv.org/abs/1508.02096
http://arxiv.org/abs/1711.03953
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1709.07432
http://arxiv.org/abs/1312.3005
http://arxiv.org/abs/1703.10722
http://arxiv.org/abs/1803.10049
http://arxiv.org/abs/1612.04426
http://arxiv.org/abs/1802.10542

Index

A
Accelerators, 68, 69, 287, 288, 299, 300,

302–305, 309, 312, 316–318
Algebraic topology, 26, 32, 243
Architectures, 1, 2, 4, 6, 7, 10, 14–18, 21, 22,

25, 26, 41–44, 49, 57, 65–70, 72–75,
78, 79, 81, 91, 93, 95, 101–104, 106,
108, 113, 115, 118–120, 126, 135,
136, 141, 143–146, 149, 152–154,
160, 161, 164, 171, 173, 178,
212, 218, 219, 221, 223, 226–228,
233, 238, 239, 241, 243, 265, 271,
276–278, 280, 283, 285, 287, 295,
298, 300, 301, 303, 305, 308–310,
312, 315, 317, 321–323, 327–332,
334

Artificial intelligence, 2, 102, 296
Attention

mechanism, 21, 22, 133, 134, 136, 143,
156, 160–164

Autoencoders, 10, 11, 17, 22, 101–121, 126,
171, 175, 176, 187, 190–193

B
Betti numbers, 26, 40–43

C
Capacity optimization, 238, 239, 256, 258,

261, 264
CapsNet, 65, 66, 73, 74, 77–79, 85, 91–95
Complexity evaluation, 238
Convolutional network, 5, 6, 48, 112, 142,

211, 328

Convolutional Neural Network (CNN), 1, 2,
4–7, 9, 22, 25, 27–29, 40, 71, 73, 74,
134, 135, 142–146, 149, 163, 212,
213, 215–224, 226, 227, 237–239,
241–246, 248, 249, 251, 256, 258,
259, 261, 262, 264, 265, 269,
271–273, 276–278, 281, 283–285,
288, 296, 298, 300, 334

Curvature, 25, 26, 33, 35–37, 51, 55, 56, 58,
59, 61

D
Data representation, 2, 11, 102, 120
Deep Belief Network (DBN), 10, 13, 22,

178, 288
Deep learning, 1, 2, 4, 10, 13, 22, 23, 26, 37,

45, 57, 66, 101, 102, 120, 126, 170,
171, 178, 206, 212, 214, 224, 238,
239, 241, 265, 269–271, 273, 281,
285, 287, 288, 296, 298, 301

Deep Neural Network (DNN), 25, 26, 49,
51, 52, 55, 65–74, 77–79, 93–95, 187,
197, 199, 206, 214, 216, 287, 288,
294–296, 300, 301, 310, 317, 321,
322, 329, 334, 335, 336

Dimensionality reduction, 10, 11, 45, 101,
102, 106, 120, 121, 126

E
E-M style label denoising, 217
Encoder-decoder framework, 133, 134, 137,

143, 144, 160, 163
Expressivity, 25, 26, 32, 44

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Deep Learning: Concepts
and Architectures, Studies in Computational Intelligence 866,
https://doi.org/10.1007/978-3-030-31756-0

341

https://doi.org/10.1007/978-3-030-31756-0

342 Index

G
Generative Adversarial Networks (GAN),

10, 12, 25, 116
Graphic Processing Unit (GPU), 65–70, 72,

73, 75–78, 81, 84, 85, 88, 91–95, 288,
294, 296, 298, 301

H
Heterogeneous computing, 303

I
Image captioning, 13, 135, 143, 144, 152,

156, 161, 162, 212, 337
Image classification, 4, 102, 143, 211, 223,

237
Inference time, 65, 67, 68, 71, 73, 77, 80, 95

L
Label noise, 211–219, 224, 225, 227, 228,

231–233
Long Short Term Memory (LSTM), 13,

15, 18–20, 22, 27, 109, 121, 139,
142, 143, 145, 148, 149, 152, 153,
156–158, 163, 164, 180–184, 288,
289, 296, 298, 300, 322, 328, 331,
332, 334, 336–338

Long-term dependencies, 17, 18, 133, 135,
142, 143, 151, 154, 156, 160, 163,
164

M
Machine learning, 1, 2, 13, 22, 25, 57, 66,

101, 102, 134, 170, 193, 195, 207,
212, 238, 265, 272, 288, 295, 300,
301, 308

Machine translation, 109, 133–137,
139–143, 151, 152, 155, 157, 160,
163, 321, 322, 335–337

Modified National Institute of Standards and
Technology (MNIST)), 47, 73, 75,
76, 78, 80, 93, 211–213, 223–227,
281

N
National Basketball Association, 269, 270,

271, 273–275, 285
Natural language processing, 1, 4, 13, 14,

101, 102, 109, 133, 136, 321

O
Over-fitting, 7, 110, 119, 176, 222, 237, 276,

330

P
Parallel computing, 17, 71

Q
Question answering, 133–135, 151

R
Recurrent networks, 14
Recursive networks, 16, 17, 170, 180, 184,

206
Representation learning, 2, 101, 102, 106,

109, 110, 113, 115, 117, 120, 126,
170, 171

ResNet50, 65, 66, 73, 74, 76–79, 85, 88–91,
93, 95

Riemannian geometry, 26, 33

S
Scaling, 65, 67, 69, 73, 75, 77–79, 81, 84,

85, 87, 88, 90, 92, 93, 95, 182, 249
Scattering transform, 25, 26, 45, 48, 50, 51
Speedup, 65, 75, 77, 78, 84–88, 90, 91,

93–95
Sports prediction, 272
Statistical language modeling, 321–323,

326, 332, 338

T
Tensor cores, 66, 68, 69, 95, 298
Tensor processing architecture, 65, 70, 95
Tensor processing unit, 66, 69, 288, 299, 301
Text classification, 211, 213, 215, 220, 223,

224, 229
TPUv2, 65, 66, 69, 73, 75–78, 80, 91, 93, 95,

96
Training time, 17, 152, 322

U
Under-fitting, 237, 242, 243
Unsupervised networks, 2, 10, 22

V
VGG16, 65, 66, 73–75, 77–80, 82–87, 91,

93, 95
Video caption generation, 134, 136

	Preface
	Contents
	Deep Learning Architectures
	1 Background
	2 Training Procedure
	2.1 Supervised Learning
	2.2 Unsupervised Learning
	2.3 Semi-supervised Learning

	3 Deep Learning Categories
	3.1 Convolutional Neural Networks (CNNs)
	3.2 Pretrained Unsupervised Networks
	3.3 Recurrent and Recursive Neural Networks

	4 Conclusions
	References

	Theoretical Characterization of Deep Neural Networks
	1 Overview
	2 Neural Net Architecture
	3 Brief Mathematical Background
	3.1 Topology and Manifolds
	3.2 Riemannian Geometry and Curvature
	3.3 Signal Processing on Graphs

	4 Characterization by Homological Complexity
	4.1 Betti Numbers
	4.2 Architecture Selection from Homology of Dataset
	4.3 Computational Homology
	4.4 Empirical Measurements

	5 Characterization by Scattering Transform
	5.1 Overview
	5.2 Invariants and Symmetries
	5.3 Translation and Diffeomorphisms
	5.4 Contraction and Scale Separation by Wavelets
	5.5 Filter Bank, Phase Removal and Contractions
	5.6 Translation Groups
	5.7 Inverse Scattering and Sparsity

	6 Characterization by Curvature
	6.1 Mean Field Theory and Gaussian Curvature
	6.2 Riemannian and Ricci Curvature Measurement

	References

	Scaling Analysis of Specialized Tensor Processing Architectures for Deep Learning Models
	1 Introduction
	2 Background and Related Work
	2.1 Tensor Cores
	2.2 Tensor Processing Units
	2.3 Other DNNs Accelerators
	2.4 Parallel Algorithms and Tensor Processing Architectures
	2.5 Parallel Algorithms and Computing Complexity in DNNs

	3 Experimental and Computational Details
	3.1 Datasets, Equipment, Metrics, and Models
	3.2 Computing Complexity of DNNs
	3.3 Scaling Analysis

	4 Results
	4.1 Vgg16
	4.2 ResNet50
	4.3 CapsNet

	5 Discussion
	6 Conclusions
	References

	Assessment of Autoencoder Architectures for Data Representation
	1 Introduction
	2 General Architecture and Taxonomy of Autoencoders
	3 Variants of Autoencoders
	3.1 Application Specific Autoencoders
	3.2 Regularized Autoencoders
	3.3 Robust Autoencoders Tolerant to Noise
	3.4 Generative Autoencoders

	4 Factors Affecting Overall Performance of Autoencoders
	4.1 Training
	4.2 Objective Function
	4.3 Activation Functions
	4.4 Layer Size and Depth

	5 Applications of Autoencoders
	6 Conclusion
	Appendix
	References

	The Encoder-Decoder Framework and Its Applications
	1 Introduction
	1.1 Machine Translation
	1.2 Image/Video Captioning
	1.3 Textual/Visual Question Answering
	1.4 Text Summarization

	2 Baseline Encoder-Decoder Model
	2.1 Background
	2.2 The Encoder-Decoder Model for Machine Translation
	2.3 Formulation
	2.4 Encoders in Machine Translation (Feature Extraction)
	2.5 Decoders in Machine Translation (Language Modeling)

	3 Encoder Structure Varieties
	3.1 Sentence as Input
	3.2 Image as Input
	3.3 Video as Input

	4 Decoder Structure Varieties
	4.1 Long-Term Dependencies
	4.2 LSTMs
	4.3 Stacked RNNs
	4.4 Vanishing Gradients in Stacked Decoders
	4.5 Reinforcement Learning

	5 Attention Mechanism
	5.1 Basic Mechanism
	5.2 Extensions

	6 Future Work
	7 Conclusion
	References

	Deep Learning for Learning Graph Representations
	1 Introduction
	2 High Order Proximity Preserving Network Embedding
	2.1 Problem Definition
	2.2 The SDNE Model
	2.3 Analysis and Discussions on SDNE

	3 Global Structure Preserving Network Embedding
	3.1 Preliminaries and Definitions
	3.2 The DRNE Model

	4 Structure Preserving Hyper Network Embedding
	4.1 Notations and Definitions
	4.2 The DHNE Model

	5 Uncertainty-Aware Network Embedding
	5.1 Notations
	5.2 The DVNE Model

	6 Dynamic-Aware Network Embedding
	6.1 The DepthLGP Model
	6.2 Extensions and Variants

	7 Conclusion and Future Work
	References

	Deep Neural Networks for Corrupted Labels
	1 Introduction
	2 Label Noise
	3 Relationship to Prior Work
	4 Proposed Approach
	4.1 Proposed Approach
	4.2 Justifying the Nonlinear Noise Model

	5 Experimental Results
	5.1 General Setting
	5.2 Artificial Label Noise
	5.3 Real Label Noise
	5.4 Effect of Batch Size
	5.5 Understanding Noise Model

	6 Conclusion and Future Work
	References

	Constructing a Convolutional Neural Network with a Suitable Capacity for a Semantic Segmentation Task
	1 Introduction
	2 Techniques to Fully Explore the Potential of Low-Capacity Networks
	2.1 Methodology

	3 Estimation of Task Complexity
	3.1 Methodology
	3.2 Summary

	4 Optimization of Model Capacity
	4.1 Methodology
	4.2 Summary

	5 Conclusion and Future Work
	References

	Using Convolutional Neural Networks to Forecast Sporting Event Results
	1 Introduction
	2 Literature Review
	2.1 Convolutional Neural Network Architecture
	2.2 Related Research Regarding Sports Predictions

	3 Research Methods
	3.1 Development Environment
	3.2 Research Process
	3.3 Experiment Design
	3.4 Performance Evaluation

	4 Experiment Results
	4.1 Dataset Description
	4.2 Results of Experiments 1 and 2
	4.3 Results of Experiment 3
	4.4 Results of Experiment 4
	4.5 Discussion

	5 Conclusions
	References

	Heterogeneous Computing System for Deep Learning
	1 Introduction
	2 The Computational Components of a DNN Involved in Deep Learning
	2.1 Fully Connected Layers
	2.2 Convolution Layer
	2.3 Pooling Layer
	2.4 Softmax Layer
	2.5 Putting All Together

	3 The State of the Art
	3.1 Intel's MIC
	3.2 Nvidia's GPU as GPGPU
	3.3 Google's TPUs
	3.4 Concluding About the State of the Art

	4 Map-Scan/Reduce Accelerator
	4.1 The Heterogeneous System
	4.2 The Accelerator's Structure
	4.3 The Micro-architecture
	4.4 Hardware Parameters of MSRA
	4.5 NeuralKernel library

	5 Implementation and Evaluation
	5.1 Fully Connected NN
	5.2 Convolutional Layer
	5.3 Pooling Layer
	5.4 Softmax Layer

	6 Conclusions
	References

	Progress in Neural Network Based Statistical Language Modeling
	1 Introduction
	2 Statistical Language Modeling
	2.1 N-Gram Language Model

	3 Extensions to N-Gram Language Model
	4 Neural Network Based Language Modeling
	4.1 Neural Network Language Model (NNLM)
	4.2 Recurrent Neural Network Language Models (RNNLM)
	4.3 Long Short Term Memory Language Models (LSTMLM)
	4.4 Bidirectional RNN

	5 Milestones in NNLM Research
	6 Evaluation Metrics
	6.1 State of the Art PPL

	7 Conclusion
	References

	Index

